a2 United States Patent

Barabas et al.

US009189536B2

US 9,189,536 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

MAINTAINING A RELATIONSHIP BETWEEN
TWO DIFFERENT ITEMS OF DATA

Inventors: Albert B. Barabas, Fitchburg, WI (US);
Ernst M. Siepmann, Pembroke Pines,
FL (US); Mark D. A. van Gulik,
Madison, WI (US)

Assignee: Miosoft Corporation, Madison, WI
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 12/535,834

Filed: Aug. 5, 2009

Prior Publication Data
US 2010/0153397 Al Jun. 17, 2010

Related U.S. Application Data

Continuation of application No. 10/385,758, filed on
Mar. 11, 2003, now Pat. No. 7,587,428, and a
continuation of application No. 09/687,268, filed on
Oct. 13, 2000, now abandoned.

Int. CI.

GOGF 7/00 (2006.01)

GOGF 1730 (2006.01)

USS. CL

CPC ... GOGF 17/30607 (2013.01); GOGF 17/30348
(2013.01)

USPC oo 707/704; 707/E17.007; 707/703

Field of Classification Search

CPC ..o GOGF 17/30348; GOGF 17/30607
USPC 707/704, 999.201
See application file for complete search history.

)
I
L/

(56) References Cited
U.S. PATENT DOCUMENTS
4,249241 A * 2/1981 Aberleetal. 710/200
4,389,706 A 6/1983 Gomola et al.
5,146,561 A 9/1992 Carey et al.
5,179,637 A 1/1993 Nardozzi
5,197,137 A * 3/1993 Kumaretal. 718/107
5,212,788 A 5/1993 Lomet et al.
5,241,675 A * 8/1993 Shethetal.ooooevvrennnnn. 1/1
5,303,368 A * 4/1994 Kotakicooovvvvinieeiinnnnnn. 1/1
5,305,200 A 4/1994 Hartheimer
5,329,626 A 7/1994 Klein et al.
(Continued)
FOREIGN PATENT DOCUMENTS
P 06-19861 1/1994
p 06-332780 12/1994
(Continued)
OTHER PUBLICATIONS

Terry et al.; Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System, 1995 Association for Computing
Machinery, pp. 1-12.*

(Continued)

Primary Examiner — Miranda Le
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Data is stored persistently. At least two different items of the
data are stored in two different non-conflicting regions or two
different physical clusters. A relationship is maintained
between the two different items of data. The relationship
enables a process to reach any one of the data items from the
other data item. Consistency of the relationship is maintained
notwithstanding updates of either or both of the items.

10 Claims, 13 Drawing Sheets

n

JCP#1

6 __

25
Job List| |Job List| |Job List

JEP#1 JEP#2 JEP#3

Job Database

JCP#2

Job Database

JCP#3

Job Database

Job Database| JCP #4

US 9,189,536 B2

Page 2
(56) References Cited 6,965,892 Bl * 11/2005 Uceda-Sosaetal. 707/704
6,993,762 Bl 1/2006 Pierre
U.S. PATENT DOCUMENTS 7,089,253 B2* 872006 Hinshaw etal. 707/703
7,587,428 B2 9/2009 Barabas et al.
5,404,521 A 4/1995 Murray 7,689,560 B2 3/2010 Barabas et al.
5434,994 A * 7/1995 Shaheenetal. 709/223 8,489,567 B2 7/2013 Barabas et al.
5,437,032 A 7/1995 Wolf et al. 8,935,225 B2 1/2015 Barabas et al.
5442791 A 8/1995 Wrabetz et al. 2003/0037048 Al 2/2003 Kabra et al.
5,448,727 A 9/1995 Annevelink 2003/0233370 Al 12/2003 Barabas et al.
5.504.894 A 4/1996 TFerguson et al. 2004/0267807 Al 12/2004 Barabas et al.
5.504.890 A 4/1996 Raz 2010/0191705 Al 7/2010 Barabas et al.
5,504,900 A 4/1996 Raz 2013/0212588 Al 8/2013 Barabas et al.
5524212 A 6/1996 Somani et al. 2015/0088820 Al 3/2015 Barabas et al.
5,551,027 A 8/1996 Choy et al.
5,557,770 A 9/1996 Bhide et al. FOREIGN PATENT DOCUMENTS
5,611,049 A 3/1997 Pitts
5,630,124 A * 5/1997 Coyleetal.ccceeevvrnnenenn. /1 JP 07-219792 8/1995
5,664,186 A 9/1997 Bennett et al. JP 09-016453 1/1997
5,666,514 A 9/1997 Cheriton JP 09-022356 1/1997
5,675,802 A 10/1997 Allen et al. JP 10-083336 9/1998
5,678,026 A 10/1997 Vartti et al. JP 2000-137688 5/2000
5,692,178 A 11/1997 Shaughnessy
5,692,183 A 11/1997 Hapner et al. OTHER PUBLICATIONS
5,701,480 A 12/1997 Raz
5,706,429 A 1/1998 Lai et al. Flanagan et al, A Testbed for Experiments with Concurrency Control
g’%}égg ﬁ g;iggg %{{aplrll_er et al.t 1 Primitives in Persistent Systems, 1993 IEEE, pp. 154-157.*
5745013 A 4/1998 Paftinctal Office Action for App. Ser. No. 2000-352662, dated Jun. 15, 2010, 2
5,748,468 A 5/1998 Notenboom et al. pages.
5,758,149 A 5/1998 Bierma et al. Transaction History for U.S. Appl. No. 10/385,758, filed Mar. 11,
5,806,065 A 9/1998 Lomc_et 2003.
5,815,710 A 9/1998 Martin et al. Transaction History for U.S. Appl. No. 10/821,586, filed Apr. 9,
5,819,066 A * 10/1998 Bromberg et al. 707/827 5004,
oh2sme A 101908 Shompson ct al. Transaction History U.S. Appl. No. 12/711,402, filed Feb. 24, 2010.
5864 851 A 1/1999 Breithart ' Transaction History for U.S. Appl. No. 09/687,941, filed Oct. 13,
5,872,969 A * 2/1999 Copeland etal. 718/101 2000.
5,881,284 A * 3/1999 Kubocccooeveviivierinnns 718/100 Transaction History for U.S. Appl. No. 09/688,309, filed Oct. 13,
5,887,143 A 3/1999 Saito et al. 2000.
5,907,848 A 5/1999 Zaiken et al. Transaction History for U.S. Appl. No. 09/687,027, filed Oct. 13,
5,918,243 A 6/1999 Giordano et al. 2000.
g’ggg"égg 2 ;;iggg ﬁ}ggf;ugharl}; of al Transaction History for U.S. Appl. No. 09/687,942, filed Oct. 13,
5,940,828 A 8/1999 Anaya et al. 2000.
5,956,704 A 9/1999 Gautam et al. Transaction History for U.S. Appl. No. 09/687,861, filed Oct. 13,
5,987,477 A * 11/1999 Schmucketal.ccoceenrnn. 11 2000.
5,987,506 A 11/1999 Carter et al. Transaction History for U.S. Appl. No. 09/687,765, filed Oct. 13,
5,999,931 A * 12/1999 Breitbart et al.c.c.oev..... UL 2000,
3k
g’gig’égg ﬁ 3‘;5888 %ﬁgii%er etal i 1 Transaction History for U.S. Appl. No. 09/687,694, filed Oct. 13,
6.049.809 A 4/2000 Raman et al. 2000.
6,081,801 A 6/2000 Cochrane et al. Transaction History for U.S. Appl. No. 09/687,268, filed Oct. 13,
6,105,147 A 8/2000 Molloy 2000.
6,110,220 A 8/2000 Dave et al. Mohan et al., “Parallel Processing: Algorism and Architecture of
6,178,542 Bl . 1/2001 Dave Parallel Database Management System (DDMS) (Part 1) and (Part
6,216,126 BL* 472001 RONSIOM .vcvovvvvvccsivnn VL 2)p Nikkei Electronics, 618:99-118 (Sep. 26, 1994), and 619:113-
6,253,209 Bl 6/2001 Chase-Salernoe et al. M. . L .
6,256,635 BL* 72001 Arrouye et al U1 119 (Oct. 10, 1994), Nikkei Business Publications, Inc., Japan [with
6,266,673 B1* 7/2001 Hong et al. .oooovovoreorovcccrrrn. 11 English translation], 52 pages.
6,269,432 Bl 7/2001 Smith Office Action for App. Ser. No. 2000-352662, dated Feb. 4, 201 1, 7
6,310,704 B1 10/2001 Dogan et al. pages.
6,374,256 Bl 4/2002 Ng et al. Nakatsu, “A New Algorithm for the Serializability Testing,” IEICE
6,374,266 Bl 4/2002 Shnelvar Transactions, J76-D-1(6):279-287, IEICE, Japan (Jun. 25, 1993).
6,389,422 Bl 5/2002 Doi et al. Office Action for App. Ser. No. JP 2000-352662, dated Nov. 9, 2011,
6,397,270 Bl 5/2002 Che_swick] 4 pages.
6,411,951 Bl 6/2002 Galindo-Legaria et al. Transaction History for U.S. Appl. No. 12/711,402, filed Feb. 24,
6,411,954 BL* 6/2002 Roffe etal. .oocorerrrrcrecer U 010,
g’jgg’zég g} " gggg% zatlo df.t al. Ut Saisho, “Concurrency Control for Parallel transactions,” IEICE Tech-
G748 Bl 89007 Bowmas nical Report, 90(144):13-18, the IEICE, Japan (Jul. 20, 1990)
6.477.617 BL* 11/2002 Golding ...ocovrrrrrerrree 711/112 (English translation).
6,507,847 Bl 1/2003 Fleischman Oﬂice Actl_on for App._ Ser. No. JP 2000-352662, dated Oct. 30,2012
6,557,082 B1* 4/2003 Jostenetal ... 711/141 (with English translation), 15 pages.
6.662.203 Bl 12/2003 Kling et al. Office Action for App. Ser. No.JP 2012-066070, dated Aug. 15,2012,
,002, g
6,687,257 B1* 2/2004 Balasubramanian 370/429 7 pages.
6,728,958 Bl 4/2004 Klein et al. Transaction History and pending claims for U.S. Appl. No.
6,769,124 B1* 7/2004 Schoeningetal. 719/316 12/711,402, filed Feb. 24, 2010.
6,792,432 B1* 9/2004 Kodavalla et al. . Office Action for App. Ser. No. JP 2012-066070, dated Feb. 19, 2013
6,823,355 B1* 11/2004 Novaesetal. ... 709/201 (with English translation), 6 pages.

US 9,189,536 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Pending Claims and Transaction History for U.S. Appl. No.
12/711,402, filed Feb. 24, 2010.

Application and Transaction History for U.S. Appl. No. 13/828,209,
filed Mar. 14, 2013.

Alami et al., “Highly Parallel Computing”, The Benjamin/Cum-
mings Publishing Company, Redwood City, pp. 153-170 and 262-
264 (1994).

PAIR Transaction History for U.S. Appl. No. 10/385,758, filed on
Mar. 11, 2003.

PAIR Transaction History U.S. Appl. No. 10/821,586, filed on Apr. 9,
2004.

PAIR Transaction History for U.S. Appl. No. 09/687,941, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/688,309, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/687,027, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/687,942, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/687,861, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/687,765, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/687,694, filed on
Oct. 13, 2000.

PAIR Transaction History for U.S. Appl. No. 09/687,268, filed on
Oct. 13, 2000.

Office Action for U.S. Appl. No. 2013-222462, dated Sep. 8,2014, 11
pages.

Pending claims and PAIR Transaction History for U.S. Appl. No.
14/561,281, filed on Dec. 5, 2014.

Bailis et al., “Eventual Consistency Today: Limitations, Extensions,
and Beyond” (Apr. 9, 2013), ACM Queue, vol. 11, issue 3, 23 pages
[online], [retrieved on May 4, 2015]. Retrieved from the Internet:
http://queue.acm.org/detail.cfm?id=2462076.

Office Action for App. Ser. No. JP 2013-222462, dated Mar. 10, 2015
(with English translation), 8 pages.

Application, pending claims and PAIR Transaction History for U.S.
Appl. No. 14/561,281, filed on Dec. 5, 2014.

* cited by examiner

US 9,189,536 B2

Sheet 1 of 13

Nov. 17, 2015

U.S. Patent

ZZ~, JuUn B)eQ sseuisng woishs
es 183 193)(19S)(1°S uonoesuels |
eeg). . leed . . leegleegleeg eV
. . D &=
- . ow_\ . - . mm
18S) (1esY - (1S)1Ps)(Ps E
xﬂmow eegd (eeg/eregleeqg
MW 861
781 ommJ A/ 1oAI8S
) O C_) dor -
snenp ¥0E- enenp enengy
dor

e

>

dsSn 181

%r/@ HOREISHIOM

RE(TETg)
[[=20)

]

161"

Jajua) Buisseooid eleq

lawoisny

US 9,189,536 B2

Sheet 2 of 13

Nov. 17, 2015

U.S. Patent

¢ Old

aseqeleq WaisAg

bojeien

\q\l‘!/
\\l\.\l!’l/
\e aseqeje(
v
T
- N | -0el
ovl o U v— = DIA
JUIBJUOY oz1 A0 J
914
oLl |
aseqeje(] pojelope
~0l

US 9,189,536 B2

Sheet 3 of 13

Nov. 17, 2015

U.S. Patent

m .mu_m m H1OSSD004d W W_LOWWWUDLH_ W er”
= =
AN A - he
:] L e ; aseqejeq
! ... O, T
e~ | Lo R - |08 Holls Nz
,” o w 108(q0
; . ! |osuoD)
; Ecow __ _ ENom ‘ w rom m MOY
NN N NN _
NN NSNS NSNS dor
1 P ! 109[00
K ' " ' v [0JU0D
voe {1l Cos |l Tos I 2kog | Ltod
i — | : &Y
Lu " m e : : wslqo dor
s ¥ o8 " | oS | Hos m j0JJU0D)
" | __ | L_on
GE]Gle) “ ; REICTe) palgo : I
; aoedg _ | eoedg ! aoedg " o
; uogusuoy i | |L_uosusuon | Uojjuauon i é6¢ ™
LYoz L %3 || oa] ! S
e L R Nler -2
uoz - @ © 202 © 102
dar dar d3ar _~00¢
. w,
oL~ Jun ejeq ssauIsng

~ 0GE

U.S. Patent Nov. 17, 2015 Sheet 4 of 13 US 9,189,536 B2

27\

25\
Job List| [Job L% Job List

JEP#1 JEP#2 JEP#3

26~ ' l

Eob Databas% JCP #1

Eob Database JCP #2
J

Eob Database JCP #3

Elob Databas% JCP #4

FIG. 4

U.S. Patent Nov. 17, 2015 Sheet 5 of 13 US 9,189,536 B2
Person
41~ | birthday: date
ssn: string
y
?Sni* *key
name irst:
40 last:
l i)
Name Index Entry
first: string
2] last string
middle: string
Object Model

FIG. 5

US 9,189,536 B2

Sheet 6 of 13

Nov. 17, 2015

U.S. Patent

0S~ 9 Old
ERIERN| T 0 |
4 __(1 A
4 (Buws) Ano Ol :A
(BuLsg) pouy| g H
(Buiis) gouy (e I
(Buwg) zeuy| Oy
I (Bumg)au Ol =a
. -2
(ssalppy:1s0]) sessaippe B _N:
(48ba3u)) uss _N_ %
(Bums) rews & O d
|| (e1e0) 212QUUIA 0| d
v (ojujuosiad:isal) oul @ O
anqupy Aoy ejeQ
[ssmuewon anbiun [|
v oi1eqeyd|e
[a] xapuj a|(esed | WISIUBYODIA seotpuy 18lao
suonluya xapuj—
100y [A] fmuep| A ensay [
E Amcoﬂ ssefiedng mm/_ :o@.mn_”uwm»r_ aweu sse|n
Ix] UoSIod:1s9] sseD 1pg

US 9,189,536 B2

Sheet 7 of 13

Nov. 17, 2015

U.S. Patent

. Old

4 fﬁ -~
A
“yuud . uss-oju] i
9)ey) 8jel su-bn
“aimpold eAes (Sre) -2y m_vc_rm-mEmc.ec_ Id
uonelausB-aweu-oju
ap0o sjeloush adA [yunodoy u&.memc-owc“ /N@ suteduwien Bunaxiew
Jo011S-8SRIPPE-04U|
slepyen
T repl Y 9)E)S-8S8JpPE-0JU] Bullyoid Jswoisng
] “8ll} O} BWBYIS oABS | apoojeIsod-ssalppe-oiuy]
Ai0-ssasppe-oju| o
1) WOl BSOS PEo| alueu p |SBp-oUEL-0JU| T
UoNo3[as elep EPUDBENTG «xapul»ofeqeyde
sjoidus Y Bups ‘swieu (ojujuosiag) o] SS800Y GOM,
diysuoy .mm: _<M> sdAuionpoid uosiad
iysuoneial jip: sodey
“-diysuone)as ppe aweu 56 Q_mc o
“aInguye 11pa T Hwhc_-msmc-o%c._ lojuopy 8s8301d (B
wr Peues

'eingupe ppe

Anuspl sey [Buidki]

(,_c// UonNguIsIq SS920.d

/>“> 8dA1onpoud

SSE[O J00I SI €9~ onposd - Jsumo sainy uoljepljosuon 2

1oRISqE S) — _ 1P8U0D _ D youeig o3
"SSBD P 9|PPIW-BLUBU-0JUSUMO _
o WP uoNEIBUBB-BLIBU-0JUJIBUMO uopezjuebio | JELOS 82.nog Bjeq %
$SE0 ppe 1S11J-8WEBU-0JULIaUMO Luoneziuebio
P PosIEW BN 1SE|-alEBU-DJUIBUMO 80IN0g BlEQ DA.
Buyikions yewun & KXBPUI BLUIBNJSB] aweu anbiun
jewunplew Q (o1ujuosiagd) :ojulisuUMO «xopuI»SeUIENGI0 uonnguisig ejeq %
| | Buns :p| Bulis ;sweu
= SSBJD puy <@,
m 19Npoid uonjeziueBio awayos 199lqQ %
uonisodwosy AV | _\wm = uoReNSIIIWPY &)
|BJUOZLION O [eoiBp, @ uonebasbby [Jo[] [A soedssweN []
_ 1’ 84 aoueeYll 7 A se0IpY| [A] I8ouEe] F aneg _u_

dieH NseT

uoleodiod JOSolW - 98UL0N0IW

U.S. Patent

70

@ Load

Nov. 17, 2015

Create
Object

631~

Delete
Object
to
Index
Entry
Links

651'\

Update
Obiject

Sheet 8 of 13 US 9,189,536 B2

615

Index
- 614 Entries
Create
Index |
Entries 018
. Estabhlish Link
Establish from Object to

Link to Index
Entry Job

its Index Entry &
Delete Template
Index Entry

634 - 635

,~ 633
Delete Delete
Index “Deindexed "} Delete
Entry Object Jobs/ |Object
Delete
Update Delete
Index Entryd, TeMPIate)| Tomplate
in Place Index Entry
Delete
Index
Entry
Establish Link
Create from Obiject to
Index its Index Entry &
Entry Delete Template

index Entry

U.S. Patent Nov. 17, 2015 Sheet 9 of 13 US 9,189,536 B2

510 520

C2 C2

J1
e
FIG. 9A FIG. 9B
530 540
C2
R2
J1a1s
531
J1b1S
532

FIG. 9C

U.S. Patent

Object 2 (C2)

(Start)

Nov. 17, 2015

Sheet 10 of 13

Object 1 (C1)
<New>

{ Start)

US 9,189,536 B2

Object 3 (C3)

Start
i, 660

Y 640
Receive J1at Receive J1bt
from R1. from R1.
J1al Creates R2 J1bt Creates R3
642 620 vy 662
J1at Spawns J1is Created. J1bt Spawns
J1a1s J1 Creates R1 J1b18
V643 | 622 1 663
R1 Creates J1at and
R2 Sends R d
1S to R J1b'. R1 Sends J1a! M1 0 RA
and J1bt to R2 and R3
v 644 v 624 I 664
R2 Receives J2a. ||R1 Receives J1a1% and|| R3 Receives J2b.
R2 Records J1b1° from R2 and R3. R3 Records
Pointers R1 Records Pointers Pointers
to R1and R3 and || to R2 and R3, and R1 || to R1 and R2 and
Caches Information]| Caches Information ||Caches Information
about R1 and R3 about R2 and R3 about R1 and R2

R1 Creates J2a and
J2b; R1 Sends J2a to
R2 and J2b to R3

Y,

g

680
Has R1, R2

No~and R3 Completed™~\Yes

Caching

Information
2

FIG. 10

Complete

US 9,189,536 B2

Sheet 11 of 13

Nov. 17, 2015

U.S. Patent

08~ Ll ©Old
[eue] | ||
< R 1
A
7‘”«
(BuLyg) uss | O
(e1e@1) @YR@ULIG 0
(ssalppy) ssalppe @ O
(Bulyg) 1se] 4| 0O
(Buyg) sippiw 0] O
(Bug) 11y dl O
= (sweN) sweu g |
L g~ oInauny Aoy eleq
9|0J Wol) 8YdED 0] SaINaURY
<] sifuis| Aueurpien [a]l uosiad | sse(o
A
J2UMO
83J0 diysisum :diysuonee
= oo 0y [1y o] :dsuonejey
X diysiaumg diysuone|ey 3p3

US 9,189,536 B2

Sheet 12 of 13

Nov. 17, 2015

U.S. Patent

¢l 9Ol

[e3ereq AleoisAyd |

DS I0] JIBAA
8 Bej4 s19jeQ
-AjledisAud
-0}-Apeey 195

A

JOIEUIpI00))
0} LW puag

paAIgnay usaq
sey Zul 910N

cui

cu g 1€£9
2
cw 10
ZW 1o pw

30y uoeq

geg

0] §W puasg M_MW ﬂwmmm_w 7

\-/E8

}siiq

H#I9A |BUI PI0DaY

b N gee

HElS

10]BUIPIOCT)
0} LW puag

[)

| peted uen

uoHeru]
a)e1eQ HeIs

0z8 0L8

US 9,189,536 B2

Sheet 13 of 13

Nov. 17, 2015

U.S. Patent

1€l Old

4,
%o @B°

o€l Old

Aw_v%
4]

2y

@, ®

(zAd) a>_5v b
Nz

¢l 9Old del 914
@.SEV@
N erne) ©
(€Z'LAL) LN —~ed
EN © ®
cd 2
® GO
(€2 LA & (ZA4) b
eI LN
d¢l ©l4 Vel 914
£ e
Jojeuipiooy
A
|2 =
(LA | J01enIu|
LN

US 9,189,536 B2

1
MAINTAINING A RELATIONSHIP BETWEEN
TWO DIFFERENT ITEMS OF DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 10/385,758, filed Mar. 11,2003, and U.S. application Ser.
No. 09/687,268, filed Oct. 13, 2000.

FIELD

This invention relates to persistent data storage techniques.

BACKGROUND

A large-scale database system may contain millions of
records that are accessible to millions of users. Potentially,
tens of thousands of data accesses on the records may take
place every second. The database system may include data
storage devices accessed by processes running on multiple
processors. The storage devices and processors can be dis-
tributed in various locations connected via networks. For
example, a large retail business could have a first storage
device that maintains names and addresses of its customers, a
second storage device that maintains inventory lists, and a
third storage device that maintains purchasing history of its
customers. The first storage device is located in Boston, the
second one in L.os Angeles, and the third one in Chicago. Each
storage device is managed by a different processor, which is
connected to the others by a wide area network (WAN). When
a customer Lisa places an order for a coffee table, for
example, through a clerk in a call processing center operated
by the retail business, the clerk has to check, via the WAN; if
the coffee table is available from the storage device in Los
Angeles. The clerk may also need to access the storage
devices in the other locations to retrieve Lisa’s address for
shipping and update her purchasing history. At the same time,
another customer Robyn may place an order for the same
coftee table through another clerk in the call processing cen-
ter. Both clerks will be reading from the same storage device
and trying to update the same inventory record for the coffee
table.

In the above example, the three different storage devices
contain different types of data records that usually can be
accessed independently. Using multiple processors, as in the
above example, can improve the performance ofthe database
system in terms of throughput and load-balancing, as long as
data accesses are independent and each access can run on a
different processor in parallel.

Because a distributed database system is accessible by
multiple processes, conflicts may occur if the processes are
not properly coordinated. Examples of conflicts include: two
processes attempting to update the same record at the same
time with two different values (as in the coffee table
example); a process attempting to read a record that is being
deleted by another process; and a process attempting to
update a record that links to a related record being updated by
another process. When a conflict happens, the operations of
processes that access the same or related data records may
interleave in an unpredictable way, such that the results of the
operations may be incorrect and may destroy the data consis-
tency of the database system.

One approach for resolving conflicts uses a semaphore that
locks a data piece (e.g., a variable, a customer record, or a
department database) when a process is accessing a data entry
within the data piece, and releases the lock when the process

10

15

20

25

30

35

40

50

60

65

2

finishes the access. All other processes must check this sema-
phore before accessing the data piece to see if any process is
currently using it. This approach may require millions of
locks on millions of data pieces if the granularity of data
pieces that can be locked is small, or may block large numbers
of'accesses if the granularity of data pieces is large, because
locking an entire department database, for example, prevents
efficient parallel execution of jobs that access disjoint data
sets that happen to be stored in the same department database.

In addition to conflicts, a large-scale database system may
also suffer from inefficient data access. To avoid searching the
entire database system just to locate a data record in a storage
device, a summary information (e.g., a table of content, an
index, or a cross-reference) of data records is usually pro-
vided in an easy-to search format. However, the summary
information may be subject to corruption unless its consis-
tency with the data records is always enforced. Furthermore,
the tasks of updating the summary information may also
create conflicts, and therefore must be scheduled effectively.

SUMMARY

In general, the invention features a method that includes
storing data persistently, storing at least two different items of
the data in two different non-conflicting regions or two dif-
ferent physical clusters, maintaining a relationship between
the two different items of data, the relationship enabling a
process to reach any one of the data items from the other data
item, and maintaining the consistency of the relationship
notwithstanding updates of either or both of the items.

Other features and advantages of the invention will become
apparent from the description and the claims.

DESCRIPTION

FIG. 1 is a diagram illustrating a data processing center
using an update stream processor;

FIG. 2 is a diagram of a federated database;

FIG. 3 is a diagram of an update stream processor;

FIG. 4 is a diagram illustrating an alternative design for an
update stream processor;

FIG. 5 illustrates an index entry;

FIG. 6 illustrates a user interface for a class editor;

FIG. 7 illustrates a display of a schema;

FIG. 8 is an example showing the process of modifying an
index when loading a file;

FIG. 9(A)-(D) illustrate the process for establishing a rela-
tionship;

FIG. 10 is flowchart of the process for establishing a rela-
tionship;

FIG. 11 illustrates a user interface for selecting cache vari-
ables for a role;

FIG. 12 is flowchart of the process for deleting a relation-
ship;

FIG. 13(a)-(f) illustrate the sequence of messages sent
among three roles for deleting a relationship.

Referring to FIG. 1, a data processing center 191 includes
atransaction system 192, a Business Data Unit (BDU) 22, and
anupdate stream processor (USP) 23. Transaction system 192
is accessible via networks including a public network 195
(such as the Internet) and a local area network (LAN) 181 by
potentially millions of users, who may be for example, cus-
tomers with computers 189 or call center operators 199 of a
large retail business that operates data processing center 191.
The users submit requests, which may be merchandise orders
or address updates, for example, through their respective
workstations.

US 9,189,536 B2

3

Transaction system 192 includes one or more servers 196
that run an application program (not shown) that communi-
cates with the workstations, receives requests from the users,
and automatically translates the requests to tasks or job
instructions 198. A request, for example, may be a purchase
order of a blue sweater for a person named Bill. A request is
in a pre-defined electronic format, and a job instruction 198 is
in a form recognizable to processes in USP 23 that create jobs.
The processes that create jobs for USP 23 are called job
creation processes (JCPs) 350, or producers.

A job created by JCP 350 is in the form of a job object. A
job object includes a data structure that points to one or more
objects stored in BDU 22. The job object also contains
instructions executed by the job execution process (JEP) that
act on the BDU objects. Because there is a one-to-one rela-
tionship between a job and a job object, we will refer, here-
after, to a job object as a job.

A task is like a job in that it is also an object that contains
instructions to be executed by the JEP but it does not neces-
sarily point to objects stored in the BDU. A task can spawn
jobsifnecessary and can send an acknowledgment back to the
application program when the task and all spawned jobs are
complete. If the task is to provide an acknowledgement then
the mechanism and necessary parameters for transmitting the
acknowledgment are recorded in the task object. A task can
also provide an acknowledgement that it has been received
and is guaranteed to execute.

As an important step in making sure that the execution of
one job will not conflict with the execution of another job, the
application program of transaction system 192 assigns the job
an integer called a contention index, included in job instruc-
tion 198. Each contention index represents a pre-partitioned
disjoint data set of BDU 22, e.g., a data set 180. The pre-
partitioning uses an algorithm defined before any objects are
added to BDU 22. The algorithm is designed to achieve
optimal load-balancing for job executions on the BDU
objects. Tasks can be assigned to arbitrary contention spaces
since they do not access the BDU object directly.

Within each data set 180, BDU objects relate to one another
in the sense that when a JEP 300 accesses an object in a data
set, conflict may occur if another process accesses another
object in that data set. Jobs of the same contention index may
require related objects in the same data set 180 to be accessed
and therefore must be executed in serial; jobs of different
contention indexes can be executed in parallel (concurrently)
to increase throughput.

A large job may be divided into one or more steps. For
example, suppose a job loads a bulk file containing one mil-
lion records in BDU 22. The job may be divided into one
million steps, with each of the steps loading one of the one
million records. Typically, there are not a lot of computations
in a step; therefore a step can be executed in a small fraction
of'time compared to execution time for the entire job. The job
is responsible to maintain enough state, which includes
updating a variable containing the file position after every
step, to ensure continuous operations after a fault. Periodi-
cally, but between steps, JEP 300 commits a transaction con-
taining the results of the completed steps, and begins a new
transaction. A transaction is committed when the results of
the completed steps are successfully written and stored into
BDU 22. During the time JEP 300 commits the current trans-
action, the state of the running job including the file position
is updated. If a fault occurs, the job would have enough
information to position the file to the last recorded position in
a recovery procedure.

An existing job may require new jobs to be spawned by JEP
300. The spawned jobs in the sweater example may include

10

20

40

45

65

4

updating the monthly gross revenue for the clothing depart-
ment and updating the inventory for the blue sweater. After a
job is spawned by JEP 300, the job is loaded into USP 23. To
maintain consistency of the database, all jobs spawned due to
the execution of a job J will be added in the same transaction
to a staging cell in the contention space in which job J intends
its spawned jobs to produce effects. The staging cell and the
contention space will be described later.

USP 23 manages the flow of jobs, directing them to JEPs
300 for execution at a suitable time. The flow is managed to
achieve high overall system throughput and data processing
efficiency, and to assure that jobs executed at the same time do
not conflict. With multiple processors running concurrent
processes, USP 23 is responsible for keeping as many pro-
cesses busy as possible, while avoiding simultaneous access
to objects in a given data set 180 by multiple processes. To
enable parallel execution without conflicts, jobs accessing the
same data set 180 are placed into a specific queue 184
assigned to one of the JEPs 300. Because there are usually
more data sets than queues, a given queue 184 may contain
jobs that access more than one data set. The queue to which a
job is assigned is calculated from the job’s contention index.
For example, suppose each queue is assigned an integer num-
ber from 0 to N-1, where N is the number of queues. A job
with contention index Q will be assigned to the queue having
the assigned number (Q modulo N). Thus, the potentially
large number of contention indexes can be mapped to the
relatively smaller number of queues.

Each queue can be viewed logically as a column. Within
the column there could be jobs accessing the same data set
180, that is, jobs that may conflict. Assigning the potentially
conflicting jobs the same contention index maps them to a
given queue 184 executed by a single JEP 300. Thus, the jobs
are guaranteed to be executed in serial, and therefore no
conflict can happen.

On the other hand, in order to increase efficiency for pro-
cesses that produce jobs, USP 23 is also logically organized
into rows 304, each of which is illustrated in FIG. 1 as a stripe
over all the queues. Each row has a row control object that can
be locked to indicate that the row is being accessed by a
process. A write lock is requested when a process wishes to
add jobs to a row. The row can alternatively be read locked by
JEP 300 when it wishes to fetch jobs in the row for execution.
The operations of adding and fetching jobs using the locks
will be described later. If enough rows are provided, it will at
all times be possible to find an unlocked row without waiting
for one to become available.

After jobs are produced, they are loaded into one row at a
time. A producer of jobs must find an unlocked row, lock the
row, load the jobs into the row, and then release the lock.
Within row 304, jobs are placed into queues determined by
their respective contention indexes. In this manner, all pro-
ducers may write jobs into the queues at the same time with-
out causing conflicts as long as there are enough rows.

In some implementations, USP 23 and BDU 22 are part of
a database organization called a federated database (Objec-
tivity/DB Administration, Release 5, February 1998, Objec-
tivity Incorporated). Referring to FIG. 2, a federated database
10 contains a number of database units (two units 100 and 110
are shown). Each database unit has a number of containers
120,130, and 140. Federated database 10, database units (100
and 110), and containers (120, 130 and 140) are basic con-
structs of a distributed, scalable object database called Objec-
tivity/DB®, which is commercially available from Objectiv-
ity Incorporated.

Federated database 10 is the highest level in the Objectiv-
ity/ DB® logical storage hierarchy. Although federated data-

US 9,189,536 B2

5

base 10 appears in FIG. 2 as one entity, it can be distributed
across multiple data storage devices in different locations that
are connected via networks.

Physically, federated database 10 exists as a federated data-
base file (not shown). Federated database 10 contains a sys-
tem database 12, which stores a schema 15 for federated
database 10, as well as a catalog 13 of the additional databases
100, 110 that make up the federation. Federated database 10
is assigned a unique integer that identifies it to Objectivity/
DB® processes (not shown), e.g., a lock server process (a
service that Objectivity/DB® clients connect to for coordi-
nating locking of objects in databases).

Each database 100, 110 is at the second highest level in the
Objectivity/DB® logical storage hierarchy. Database 100
stores a user application’s persistent data, for example, cus-
tomer address data for a retail business. Database 100 is
physically represented by a database file (not shown). Each
database is attached to exactly one federated database and is
listed in that federated database’s catalog 13. Database files
and their associated federated database file may reside on
different machines. In addition to having a physical filename,
database 100 also has a system name, which can be specified
by a system manager of federated database 10. The system
name of database 100 is a logical name within federated
database 10.

The containers 120 within a database 100 hold fundamen-
tal units of persistent data called objects (145, for example). A
container 120 determines the physical clustering of objects. A
container 120 is also the fundamental unit of locking—when
any object in a container 120 is locked, the lock is applied to
the entire container, effectively locking all objects in the
container.

The container-level granularity can benefit overall perfor-
mance, because a lock managing process only needs to man-
age relatively few container-level locks rather than poten-
tially millions or billions of object-level locks. FIG. 2 shows
that objects may be clustered in separate containers and yet
still reference one another (148).

For example, data set 180 of FIG. 1 and FIG. 2 may contain
a number of BDU databases 100, and each of the BDU data-
bases 100 may contain tens of thousands of BDU containers
120. Each BDU container 120 stores objects 145 holding
personal or business records, as well as links 148 between the
objects.

Alternatively, object 145 may represent a job performing a
write operation, such as creating, deleting, or modifying an
object in BDU 22. The BDU object receiving (i.e., affected
by) the write operation must have the same contention index
as object 145. On the other hand, a job performing a read
operation as part of its activity can read from any database. A
mechanism for managing read operations without conflicting
with a write operation is readily available from Objectivity
MROW' (multiple readers one writer).

FIG. 3 shows an embodiment of a federated database 10
that includes a system database 12, a BDU 22, and a USP 23.
USP 23 is organized as a matrix having (n+1) logical columns
and (m+1) logical rows. The number of columns and rows
required for USP 23 to avoid conflict at all times will be
described later.

A logical column of USP 23 and corresponding data sets
180 of BDU 22 form a database (201, 202, . . . 20%), with each
database representing a contention space (211, 212, ... 21n).
One of the logical columns, the leftmost column in FIG. 3, is
stored in a root database 24. Each logical column, except for
the one representing root database 24, includes a logical cell
called an execution cell (EC), and m logical cells called
staging cells (SC).

10

15

20

25

30

35

40

45

50

55

60

65

6

A logical row 304 of USP 23 is a logical unit for managing
the accesses to the row’s constituent cells. In FIG. 3, row 304
holds staging cells SC,,, SC,,, . .. SC, .

Each logical cell, whether an execution cell or a staging
cell, is a container that holds job objects. A staging cell is
where JCP 350 places a job after the job is created, and is also
where JEP 300 receives jobs for transferring to an execution
cell. The execution cell holds ready jobs, running jobs, and
waiting jobs. The staging cell holds jobs that are loaded from
JCP 350.

Root database 24 includes a Job Scheduler (JS) container
and m row containers (R, R,, ... R,,). Each row container has
a row control object 292 that keeps a list of the constituent
staging cells of the row. Row control object 292 is used as a
handle for a write lock or a number of read locks for the row.
A list of constituent cells for each contention space is kept in
a contention space object 291 stored in the execution cell
container of that contention space. The information about all
of the row control objects 292 and contention space objects
291 is kept in the JS container.

Databases (201, for example) are located in data storage
devices (e.g., disks 311) accessible by respective processors
(e.g., processor 321). Preferably, each column database is
stored on a separate disk, and each processor runs only a
single JEP 300. For example, database 201 resides on a disk
311 accessible by a processor 321 running a JEP 300. This
arrangement keeps network traffic low and reduces disk
thrashing, thus improving the network latency and increasing
the throughput.

The physical placement ofroot database 24 is not critical to
the performance, because the containers in root database 24
are infrequently read or written.

JEPs 300 may be assigned to process jobs in logical col-
umns of USP 23 using a one-to-one mapping, i.e., one JEP per
column. However, other types of mapping can be imple-
mented to allow scalability and load-balancing. For example,
allowing one JEP for multiple columns may enhance the
scalability of USP 23 in terms of the number of processors,
processes or columns. The arrangement of one JEP for mul-
tiple columns has a benefit that when the number of proces-
sors changes, the number of columns in the USP and the
number of JEPs per processor can stay the same, and there-
fore requires less effort to scale the number of processors used
by USP 23. Furthermore, job loads may be balanced out
across multiple columns assigned to the same JEP, multiple
JEPs running on the same processor, or a combination of
both. On the other hand, allowing multiple JEPs per column
may improve the performance of USP 23. With the arrange-
ment of multiple JEPs per column, only one JEP is designated
as the execution process to prevent conflict while other JEPs
only provide assistance (e.g., pre-fetching jobs) to speedup
the execution.

To avoid all contention and assure that no process waits on
a locked row, at least C+P rows and C columns are required
for a USP having C JEPs and P JCPs. C columns are required
to assure that each JEP has jobs available at a given time. C+P
rows are required so that every JCP and every JEP can find a
row available at any given time to load new jobs into. Taking
into account the JS container, the row containers, and the
column containers, the total number of containers required to
avoid contention and eliminate waiting on locks is (C+P+1)
(C+1). Because no process needs to wait on locks to load new
jobs, the new jobs are accepted by USP 23 as soon as they are
produced or spawned.

USP 23 can be implemented in a number of computer
languages, including VisualWorks Smalltalk, Java or C++.
Example implementations require a moderate speed network

US 9,189,536 B2

7

connecting several machines, with each of the machines hav-
ing physical disks and processors. Each machine’s disks hold
columns of USP 23 that are accessible to that machine’s
processors.

In operation of USP 23, JEP 300 represents a consumer
process that executes and then deletes jobs in USP 23. Either
periodically or when the JEP’s execution cell has no job ready
to be executed, JEP 300 scans the rows using a round robin
scheme from a random permutation of the rows. If the
selected row cannot be locked, the next row selected by the
permutation is attempted until a read lock is acquired on one
of'the rows. After a read lock is acquired, JEP 300 fetches all
jobs in the staging cell located at the locked row within the
designated contention space, copies the jobs to the execution
cell, and deletes the jobs from the staging cell. JEP 300 then
releases the read lock and begins executing one job at a time.
After executing a job, but in the same transaction, JEP 300
deletes the job from the execution cell.

During the job execution, JEP 300 uses the information
carried with the job to determine if the job requires any new
jobs to be spawned. The new jobs spawned by JEP 300, if any,
are stored in the staging cells of a row acquired by the JEP
with a write lock. The staging cells are located in the conten-
tion space specified by the contention indexes of the new jobs.

A row control object (292, for example) may have multiple
read locks acquired by multiple consumers at the same time,
as long as each read lock is acquired by a different consumer
in a separate contention space. However, row control object
292 allows only one write lock at a time, which is achieved
through the default Objectivity/ DB®. A write lock on a row
also excludes any attempt to obtain a read lock on the same
row, because read and write at the same time may create data
inconsistency. Similarly, the existence of one or more read
locks on a row prevents the acquisition of a write lock on the
same row.

JEP 300 writes back results of job execution to a persistent
memory, such as a cache memory or a disk, when committing
a transaction. The transaction of a job execution is defined
based on a pre-determined criterion, such as duration of
execution time or number of executed steps. When the pre-
determined criterion is met, for example, 10 seconds have
passed since the beginning of the transaction or 500 steps of
one or more jobs have been executed, JEP 300 commits a
transaction. A transaction may include the execution of mul-
tiple jobs if the jobs are short. For example, one transaction
might include the last half of a job, ten complete jobs, and the
first half of another job.

The operations of a consumer process generally include:

1. Begin by JEP 300 selecting a job from the execution cell
and sending it a #start: message. The job responds by return-
ing a first memento, which is an object, to JEP 300. The first
memento will be passed back to the job later. The first
memento is transient (i.e., kept in RAM only and not stored
anywhere in the federated database), and JEP 300 keeps track
of it automatically.

2. Periodically, JEP 300 asks the job ifit is over by sending
it an #atEnd: message and passing the current memento back
to the job. Ifthe job returns a “true” indicator, a finish message
is sent as explained below.

3. If the job does not return a “true” indicator, JEP 300
sends the job a #step:withScheduler: message, passing the job
the current memento and information stored in the JS con-
tainer. The job returns a second memento (which may be the
same object as the first memento). Administrative informa-
tion, such as the information stored in the JS container, is also
passed to the job. The information is used if the job requires
more jobs to be spawned.

10

15

20

25

30

35

40

45

50

55

60

65

8

4. JEP 300 then decides whether to commit a transaction of
the job according to, for example, whether 10 seconds have
passed since the last transaction was committed. Then JEP
300 again asks the job if it is over.

5. Oncethe job returns a “true” indicator, JEP 300 sends the
job a #finish: message, passing the job the current memento.
JEP 300 then deletes the job.

6. JEP 300 proceeds with the next job in the execution cell.
If no job is ready to run in the execution cell, JEP 300 scans
rows in its column for new jobs.

Execution of a job may be interrupted by a JEP failure,
causing the job to be only partially executed. However, the
state of the job can be recovered at least up to the time of the
most recent committed transaction, because the contention
space object 291 records the state of current running jobs in its
execution cell container every time a transaction is commit-
ted.

The recovery procedure includes starting up a new JEP to
replace the failed one, and then informing the partially
executed job to restart. The recovery procedure allows the job
to reset its external state if there is any. The recovery proce-
dure is generally as follows:

1. Send the job the #restart: message. The job returns a
memento for the new JEP to use in continuing execution of
the job.

2. Continue at step 2 of the job execution procedure as
described in the previous section.

To add a job to USP 23, a job-producing process scans the
rows using a round robin scheme from a random permutation
of'the rows, until a write lock is successfully acquired on one
of'the rows. The job producing process can be JCP 350, or JEP
300 that is spawning new jobs. The job-producing process
holds the write lock while the job and other jobs that are being
loaded at the same time are placed into the staging cells within
that row, until a job-producing transaction is over. The job-
producing transaction can be defined similarly to a transac-
tion of a job consumer. After the transaction is completed, the
job-producing process releases the write lock and the jobs
may be selected for execution by the respective JEPs 300
using read locks on the rows. Thus, the operations of adding
a job into USP 23 generally include:

1. Acquiring a write lock on a row by acquiring a write lock

on the row control object 292 of the row.

2. Adding jobs to the appropriate cells of the locked row,

according to the jobs’ contention indexes.

3. Releasing the write lock.

The following procedure can be used to create a USP with
a name “SampleUSP”.

UpdateStreamProcessor
createWithName: ‘SampleUSP’
producers: 4

consumers: 10.

The procedure creates 11 databases, named “Updat-
eStreamProcessor SampleUSP root”, “UpdateStreamProces-
sor SampleUSP contention space 17, . . . “UpdateStreamPro-
cessor SampleUSP contention space 10”. The root database
has a JS container and one row container for each of 10+4=14
rows. Each of the other ten databases represents a contention
space, preferably stored on a disk at or near the processor
assigned to process that contention space.

The following example shows an instruction of an appli-
cation program, for locating the USP named SampleUSP and

US 9,189,536 B2

9

receiving a handle to the USP. The application program, for
example, may be the one stored in transaction system 192 in
FIG. 1.

js =UpdateStreamProcessor named: ‘SampleUSP”’.

The above function must be called within a transaction.
Once the handle is received, the application program may
further instruct the processes of the USP to schedule new jobs
and execute existing jobs.

The following instruction triggers a JCP 350 to lock a row
and write a job into the row.

js currentOutputRow addJob: aJob.

The currentOutputRow is a function that finds an unlocked
row, and the function is called within a job-producing trans-
action. Only the first request for currentOutputRow in a new
transaction causes JCP 350 to find another unlocked row;
repeated requests cause JCP 350 to return the same row.

Sometimes, jobs must be executed in a pre-determined
order to ensure correctness of the results. A method of enforc-
ing the pre-determined order of job execution is called syn-
chronization. In a commercial database system, for example,
there may be relationships among persons, and these persons
and the associated objects may refer to each other via
attributes. A proper order of job execution is required when
updating the attributes, relationships, and links that relate one
record to another record or person. Otherwise, the integrity of
the database system may be destroyed and data consistency
may be lost.

A job has a quorum fraction and a tag, both of which are
used for synchronization. A job participating in synchroniza-
tion can be executed only when all the other jobs participating
in the same synchronization arrive in the execution cell. Jobs
that participate in the same synchronization form a synchro-
nous group identified by the tags of the jobs. If a job’s tag is
nil, it means that the job does not participate in any synchro-
nization. If a job’s tag is not nil, it is grouped together with
other jobs with the same tag.

The quorum fraction of a job represents its proportion of a
quorum in synchronization. For example, if 5 jobs need to be
synchronized, each of the jobs is assigned a quorum fraction
value 5. When the total fractions of the jobs with the same tag
in the execution cell reaches one, those jobs are moved en
masse from a Smalltalk dictionary in the transient memory, to
a ready-to-run list stored in the execution cell. The dictionary
holds a list of the jobs waiting in the execution cell. The
waiting jobs are indexed by their respective tags so that jobs
of'a synchronous group can be easily identified. Waiting jobs
are not yet ready when some jobs in their respective synchro-
nous groups have not arrived in the execution cell.

A job with a quorum fraction of zero is invalid. An error
occurs if the total quorum fraction of a group of jobs that need
to be synchronized is greater than one.

Jobs of a synchronous group must be executed in the same
contention space. If jobs in different contention spaces need
to be executed in a certain order, token jobs can be generated
to pad the quorum fraction in a given contention space to one.
For example, suppose job 1 creates jobs 2 and 3, which are all
in different contention spaces. Let us further suppose that job
3 must executed only after job 2 has completed. When job 3 is
created, it is given a quorum fraction of V%, and a generated
unique tag. When job 2 is created, it has no tag, but it knows
what job 3’s tag is. When job 2 executes, the last thing it does
is create a token job 3a that has the same tag as job 3, and a
quorum fraction of %5. Only when jobs 3 and 3a have both
arrived can they execute. Note that job 3a might do nothing,
other than act as the trigger that achieves a quorum fraction of
1, allowing job 3 to run.

10

30

35

40

45

55

10

As another example, consider a very long running job, with
many steps that produce other jobs. Say that we don’t want
any of these spawned jobs to run until the main job has
completed. We must use synchronization, because the trans-
action may be committed many times between steps of the
main job, which allows the spawned jobs to be transmitted to
their target contention space. We can give each spawned job
the minimum possible quorum fraction (273?), and record
how many jobs went to each contention space. In the last step
of the main job we can send a dummy trigger job to each
contention space that we sent any jobs to, using a quorum
fraction that is 1 minus the total of the quorum fractions of
jobs we sent to that contention space. Thus, only when these
trigger jobs have been sent (which is only when the main job
completes), can the previously spawned jobs start executing.

The tag carried by a job is a unique integer that identifies
the job as part of a synchronous group. JEP 300 uses an
associative structure in RAM to map a tag integer to a syn-
chronous group. JEP 300 groups the jobs with the same tag
together to determine the quorum. Because jobs only exist in
the database for a limited amount of time until they are
executed, a cyclic 64-bit counter usually suffices for the pur-
poses of generating an integer, unique for any existing syn-
chronous group in USP 23. To avoid contention on the
counter, each contention space object 291 maintains its own
64-bit counter for the jobs spawned by the corresponding JEP
300. Each row control object 292 also holds a counter to
construct tagged jobs created by JCP 350. The column num-
ber or the row number of the container holding the job can be
incorporated to ensure the uniqueness of the tag. One imple-
mentation for generating an integer for a tag of a spawned job
assigns a number from 0 to N-1 to each of the columns of a
USP having N columns. The tag integer of a job can be
generated by taking the counter value multiplied by N, and
then adding the assigned column number of the container
holding the job. Similar approaches can be used for generat-
ing a tag for a job created by JCP 350. A signed integer may
be used to distinguish a synchronous group generated from
row control object 291 and contention space object 292.

When a tag needs to be generated, JCP 350 or JEP 300
sends a message #nextUniquelnteger to row control object
292 or to contention space object 291, respectively. During
the time the tag is being generated, a write lock is acquired
(and is typically already acquired by a previous request) in the
same transaction on the row control object 292 or contention
space object 291 to prevent contention on this counter.

Instruction sent to a row control object 292 for generating
atagis:

taglnt :=js currentOutputRow nextUniquelnteger.

Instruction sent to a contention space object 291 for gen-
erating a tag is:

taglnt := (js contention spaces at: 5)
nextUniquelnteger.

Using the quorum fractions and tags, the correct order of
job executions is assured. For example, suppose a job J1 in
contention space #1 creates jobs J2 and J3. These jobs run in
different contention spaces (say contention spaces #2 and #3
respectively). When J2 is finished, it creates job J4. Similarly
J3 creates J5. J4 and JS are assigned to the contention space in
which J1 executed. J4 and JS have the same tag integer as each
other, and each has a quorum fraction of %4. Thus, if I4 arrives
first in contention space #1, it cannot be executed until J5 also
arrives. Similarly, if J5 happens to arrive first, it must wait for
J4 to arrive before executing.

US 9,189,536 B2

11

J4 and J5 must have the same tag, but that tag must be
globally unique. Therefore, it is J1’s responsibility to allocate
aunique integer (e.g., by asking the current output row for the
next unique integer). J1 tells J2 and J3 what this integer is
(note that J2 and J3 have no tag of their own, as they don’t
need to be synchronized). When J2 creates J4, it sets J4’s tag
to this integer. Similarly, J3 sets J5°s tag to this same integer.
J2 and J3 might also have to contain information about which
contention space to send J4 and J5 to, if it’s not apparent from
the rest of the data J2 and J3 contain.

Example code for an application program to trigger a JCP
350to create a pair of synchronous jobs is shown below. In the
code, jobl and job2 are assigned the same contention index,
the same tag, and different quorum fractions that total to 1.
Both of the jobs must arrive in the execution cell of the
assigned contention space before either one may be executed.

| row unique jobl job2 |
row := js currentOutputRow.
unique := row nextUniqueInteger.
< Optionally commit transaction

jobl := BeepingJob new.
jobl contentionIndex: 123.

jobl taglnteger: unique.
jobl quorumFraction: 2/5.
row add: jobl.
job2 := BeepingJob new.
job2 contentionIndex: 123.

job2 taglnteger: unique.
job2 quorumFraction: 3/5.
”...Do anything”
row add: job2.
Commit transaction

After a synchronous job group arrives in the designated
execution cell, a job collapsing procedure may take place
before JEP 300 executes the group of jobs. The job collapsing
procedure reduces multiple jobs into a single job, thus elimi-
nating redundant jobs and simplifying repeated jobs. When a
synchronous job group becomes ready to execute, JEP 300
sends a #collapselobs: message to each of these jobs in turn,
passing the collection of jobs as the argument. If one of the
jobs replies with a job instead of nil, this job will be used in
place of the entire group. This job will typically contain all the
information found in the original group ofjobs. The execution
result of the new job is equivalent to the combined results of
all the jobs in the synchronous group. For example, N “incre-
ment counter by one” operations can be collapsed into
“increase counter by N”.

An example of using synchronous job group and job col-
lapsing is described as follows. USP 23 may run a load job
that processes all records in BDU 22 to determine if there is a
match between a given record and a record stored in BDU 22.
For example, the given record may be a new record containing
customer John’s new address. The load job spawns a number
of match jobs, and each of the match jobs compares specific
matching attributes, such as birthday, name, social security
number, or a combination of the attributes, between the given
record and the stored records.

The match jobs know which record they represent, as well
as how many match jobs were created for the record. When a
match job finds the corresponding stored records that match
the given record, it creates jobs, each of which holds one of
these records, and sends them back to the contention space
that started the matching. Each new job has a quorum fraction
that is 1/(M*R), where M is the number of match jobs, and R
is the number of records that this match job found. Note that
the total ofthe quorum fractions of replies from any match job

10

15

20

25

30

35

40

45

50

55

60

65

12

equals 1/M. In the case that no matching records were found,
a special dummy job must be sent to indicate this, with quo-
rum fraction 1/M.

In the example of customer John, the match jobs produced
reply jobs that reference all of John’s stored records. Only
when all of these reply jobs have arrived back at the original
contention space can they be processed. This is precisely
when the sum of the quorum fractions equals 1. At this time,
the match reply jobs can be collapsed into a single job thathas
the complete list of matching records. This data can be ana-
lyzed and merged as needed, and update jobs can then be sent
to each record that needs to be modified to accommodate the
changed address.

Tasks use synchronization of jobs to enable an acknowl-
edgment to be sent after all jobs that were spawned as a result
of'the task’s execution are completed. All spawned jobs carry
the task’s contention space, a unique tag and a fraction that
when added to all other fractions contained in other jobs
spawned by a given job will total to the spawning job’s
fraction. In the case of jobs spawned by the task their fractions
will total to one. A quick way to generate these fractions is to
take 1 divided by the number of jobs that are being spawned
and multiplying this by the spawning job’s fraction and using
the resulting fraction in each of the spawned jobs where a
task’s fraction is assumed to be 1. This scheme will cause the
sum of all fractions across the final jobs (jobs that do not need
to spawn any further jobs to do work other than acknowledg-
ment) to total to one. The final jobs spawn an acknowledg-
ment job with the recorded contention space, tag and fraction
as quorum fraction. When all the acknowledgment jobs arrive
atthe task’s contention space they are collapsed and executed
causing the acknowledgment to be sent to the application
program.

Other implementations are within the scope of the claims.

For example, instead of using a separate execution cell,
jobs that do not require synchronous executions can be
executed directly from the staging cells. Synchronized jobs,
however, would still have to be moved to the execution cell for
execution, so that they could all be executed as a synchronous
group and deleted together.

To facilitate job executions directly from a staging cell,
each staging cell has a counter that indicates the number of
jobs in the staging cell waiting to be executed. The counter
may be a 32-bit counter that wraps around to O when the
counter value reaches 2°2~1. When JCP 350 adds a new job
into a staging cell, the counter in the staging cell is incre-
mented. Both the addition of the job and update of the counter
are done in the same transaction.

Each execution cell also has similar 32-bit counters that
indicate the number of completed jobs for respective staging
cells. When JEP 300 completes a job execution, the associ-
ated counter in the execution cell is incremented with a
MROW write. The MROW semantics allow the counter to be
access simultaneously by a single writer and multiple readers.
Periodically, JCP 350 examines the counters in the execution
cell with a MROW read. The values of the counters are used
by JCP 350 to determine how many jobs can be deleted in the
respective staging cells.

When JEP 300 needs new jobs to execute, the JEP reads all
jobs in the staging cell whose counter value is greater than the
execution cell’s counter value, taking into account that the
counter can wrap to zero when it reaches its maximum value.
A counter value is considered greater than another value ifthe
(counter value—another value) modulo maximum size<
(maximum size/2). For example, in the case of comparing the
values of two 4-bit counters, suppose the counter value is 9,
and the other value is 7. Since 9-7=2, 2 modulo 16=2, and 2

US 9,189,536 B2

13
is less than (16/8), therefore, 9 is greater than 7. This subtrac-
tion also wraps; for example, (0-1) is equal to the maximum
value of the counter. The workload for JEP 300 is reduced
because the JEP never needs to modify the staging cells.

In a certain embodiment, the USP does not even have the
matrix structure shown in FIG. 1 and FIG. 3. Instead, the USP
includes job databases and their respective processes, which
communicate via TCP/IP sockets. The locking operations are
no longer needed because the concept of rows does not exist
in this embodiment. Referring to FIG. 3A, USP 27 includes
JEPs and JCPs, each of which has a job list (25) located in the
memory of the same processor running the process. Job data-
base 26 of a JCP stores backup copies of jobs that are sent to
JEPs; job list 25 of a JEP tracks jobs waiting to be executed.
When a JCP creates a job, a copy of the job is loaded into the
JCP’s job database 26 as a backup. The JCP transmits the job
via a TCP/IP socket to an appropriate JEP whose contention
space is specified by the job’s contention index. After the JEP
receives the job, it temporarily adds the job to its job list 25
waiting for execution.

A TCP/IP socket is a software entity that allows an appli-
cation program to send and receive TCP/IP messages over a
network. Using the TCP/IP sockets, jobs may be sent and
received as TCP/IP messages, thus hiding network details
from the programmers of the system.

Each JCP has a socket connection to each JEP, through
which it can transmit jobs that must be executed by that JEP.
Jobs from a particular JCP destined for a particular JEP are all
transmitted through the same socket connection, and are
assigned consecutive job ID numbers, modulo 232,

USP 27 utilizes the concept of an “autonomous partition”
implemented by Objectivity/DB®. An autonomous partition
is basically a subset of databases of a federated database.
Each database belongs to exactly one autonomous partition.
In this variation of the USP, each process can operate in its
own autonomous partition. Database writes can be con-
strained as local to the database controlled by its associated
executing process, thus greatly reducing network traffic and
safely isolating failure of any processor until that processor is
recovered. As a result of reduced network traffic, the autono-
mous partitions also reduce the undesired eftects of deploy-
ment on a Wide Area Network (WAN) that spans across
distant geographic sites. The undesired effects include higher
cost of transmitting data and higher expected failure rate of
communication links, as compared to a Local Area Network
(LAN). Because of the reduced network traffic, the autono-
mous partitions not only lower the cost for deployment on the
WAN, but also lessen the demand for reliability in the trans-
missions.

The TCP/IP socket connections between the JCPs and JEPs
are of the “stream” variety, rather than “datagram”. The
underlying network protocol for the “stream” variety ensures
delivery of the messages, including error correction and
retransmission as necessary. Individual IP packets may arrive
at the physical network adaptor in any order, zero or more
times, and arbitrarily corrupted. The “stream” socket imple-
mentation is responsible for correctly reordering these pack-
ets, requesting retransmission of garbled packets, and dis-
carding redundant packets. If transmission of a packet cannot
be accomplished and acknowledged in a reasonable amount
of'time and effort (typically a few seconds), the protocol will
simply notify the clients (i.e., the JCP and JEP) that the socket
has been disconnected. If a socket is disconnected, the clients
will periodically attempt to reconnect the disconnected sock-
ets. A JEP will continue to process jobs arriving from the

10

15

20

25

30

35

40

45

50

55

60

65

14

connected sockets while attempting to reconnect. Thus, job
processing is continued even during recovery from a failed
node or network link.

The packet size on a typical network is several kilobytes in
length. For a fixed-sized packet, the overhead of transmitting
a packet is fixed. Because the size of a job is usually shorter
than the size of a packet, it would be inefficient to transmit
each job as a single packet. Therefore, before transmission,
jobs are written into a buffer whose size equals the packet
size. The transmitting process packs as many jobs as possible
into each buffer, and transmits the entire buffer in a packet to
reduce wasted network traffic.

Occasionally, nearly empty packets still need to be trans-
mitted; otherwise if the USP becomes quiescent the final jobs
might never be transmitted. Thus, we set a limit on how long
data can remain in a buffer prior to it being sent in a packet. If
more than, for example, 10 seconds has elapsed since the first
job was written into a buffer, the buffer is flushed to the
socket, forcing the packet to be physically sent. On the other
hand, if we timed it relative to the last job in the buffer, a
trickle of jobs arriving every 9 seconds might keep the buffer
from being transmitted for several minutes, despite the fact
that some of the jobs had been waiting to be transmitted for a
long time. The time limit can be reduced if the USP is used in
an environment that requires lower latency.

To ensure that jobs will be executed even in the event of a
failure, committed jobs are always written to the JCP’s job
database 26 prior to transmission to a JEP via the socket.
When a job is received by the JEP, we know that the job has
already been committed to a JCP’s database. In the event of a
failure, the JCP will scan its job database 26 and retransmit to
each JEP those jobs that may not have been executed yet. The
JEP simply ignores jobs whose 1D indicates the job has
already been received and executed.

To keep the JCP’s database of jobs from growing arbi-
trarily large, each JEP has the responsibility of recording the
ID numbers of the most recently completed jobs, one number
per JCP, every time it commits a transaction. These job 1D
numbers are counted by a RAM counter, and are used during
recovery to tell which jobs have already been executed and
can be ignored. The JEP also periodically transmits to each
JCP a deletion message containing the RAM counter value
for that JCP. When the JCP receives the deletion message, it is
free to delete every job with an ID less than or equal to the ID
in the message, using wrapping arithmetic (i.e., to delete
every job whose ID is equal to the ID in the message, within
23! below the ID in the message, or is more than 23! above the
ID in the message).

A job deletion message cannot carry an ID of a job that has
not been executed. If the job is non-synchronized, the job
must have been executed to completion and committed. If the
job is a synchronized job, duplication of information in the
JEP is required. Prior to transmitting a job deletion message
with an ID of a synchronized job, the JEP stores a copy of the
job in job database 25 and commits it. Storing a copy of the
synchronous job is necessary for recovery in the event of a
failure; otherwise there would be no persistent record of the
job. The associative structure in RAM, which is described
earlier in job synchronization, records the mapping from each
synchronization tag to the list of jobs in the synchronous
group with that tag, including the synchronous job whose ID
was transmitted in the deletion message. At recovery time the
associative structure is rebuilt from the jobs in job database
25.

When the group’s total quorum fraction reaches 1, the
group is given the opportunity to collapse into a single job. If
a collapse happens, the jobs of the group are deleted from the

US 9,189,536 B2

15

database and the associative structure, and the single replace-
ment job is stored in place of the group in a single transaction.
The single job is treated as a synchronous group with a single
member whose quorum fraction is 1.

Whether a synchronous group consists of several original
jobs or one single job created by collapsing, when the group
is ready to run, the tag of the group is recorded and job
execution begins. When a job in the group completes, the job
is deleted from the JEP’s job database 25, and the next job in
the group is started. If it is required to commit a transaction
part way through the execution of the group (e.g., to limit the
duration of the transaction), the JEP will record the tag of the
group, as well as the pointer to the job being executed. If a
crash happens during the commit, the remaining jobs of the
group will be executed before any other jobs. After all jobs of
the group have completed, the next incoming job via any
socket connection is processed.

Since each JCP/JEP pair uses consecutive ID numbers for
its transmitted jobs, and since deletions occur in the same
order as transmission of the jobs, the JEP can safely transmit
only some of the deletion messages, with each message
requesting a block ofjobs to be deleted. When a JCP receives
a job deletion message, it deletes all jobs that have an ID less
than or equal to the transmitted ID (using the wrapping arith-
metic as described above). To reduce the number of job dele-
tion messages, the JEP transmits a deletion message to a JCP
only ifeither the ID of the deletion message crosses a multiple
of'a pre-determined number (e.g., 1000), or the deletion hap-
pened more than a pre-determined length of time (e.g., 10
seconds) ago and no new jobs from the JCP (or from any JCP)
have arrived in that time.

Without the latter condition, at most a few thousand jobs
will have to be retransmitted for each JCP/JEP pair when
recovering from a JEP failure. With the latter condition, the
JCP may periodically delete completed jobs in its job data-
base 26 even when no new jobs arrive. The length of time in
the latter condition is a trade between the recovery overhead,
the deletion overhead, and transmission cost. A shorter time
period allows the JCP to delete completed jobs more often,
and therefore fewer jobs will be re-transmitted in case of a
JEP failure. However, reducing the time limit below 10 sec-
onds in the latter condition is probably not worthwhile,
because it would increase the number of deletion transactions
that the JCP would have to perform. A significantly smaller
value would waste a small amount of CPU time dealing with
deletion of jobs in the JCP’s job database 26. If a larger value
is used, a disadvantageous situation may arise that when a
large number of new jobs finally arrive, the JCP may have
wasted its idle time and will now have to spend time perform-
ing job deletions even though new jobs are ready.

As an alternative perspective, consider the life cycle of a
typical non-synchronized job J:

Suppose at some point of time, JCP#1 creates job J. Job J is
assigned to run in contention space #2, because J manipulates
the data in contention space #2. Assume that contention space
#2 is under the control of JEP#2, and job J is assigned a unique
1D number 123, one greater than the ID number of the previ-
ous job sent from JCP#1 to JEP#2.

The next time JCP#1 commits a transaction, a copy of job
Jwill be written to JCP#1’s job database 26. JCP#1’s current
ID numbers will also be written in the same transaction.
Immediately after the transaction has committed, J will be
converted into a sequence of bytes and written into a buffer
with other jobs bound for JEP#2. When that buffer is full, all
the jobs in the buffer will be sent in a packet to JEP#2.

JEP#2 eventually receives the packet from its JCP#1-
JEP#2 socket connection. The packet is converted from a

10

20

25

30

35

40

45

50

55

60

65

16

sequence of bytes into a sequence of jobs, effectively recon-
stituting J and the other jobs. The jobs are moved to a queue
in RAM, where they are interleaved with other jobs arriving
from other sockets. The interleaving preserves the relative
order of jobs coming from JCP#1.

Suppose that JEP#2 crashes while J is in the queue. JEP#2
is rebooted, and the socket connections are re-established.
When the connection from JCP#1 is re-established, JCP#1
retransmits all jobs in its job database 26, including a copy of
J. Some of the jobs that came before] may have already been
executed to completion by JEP#2. These jobs are transmitted
anyhow by JCP#1, but JEP#2 ignores them. JEP#2 knows to
ignore a job when the job’s ID is less than or equal to the
currently completed job 1D that JEP#2 stores in its job data-
base 25. When J is received again by JEP#2, it is placed in the
queue in job ID order with respect to other jobs originating at
JCP#1.

Eventually JEP#2 removes J from its queue and executes it.
JEP#2 increments a RAM counter that indicates it has now
executed job 123 (i.e., job J) from JCP#1. Many jobs may be
executed prior to and after J in the same transaction, hence the
RAM counter may be incremented many times during a trans-
action.

When the transaction is committed, the current values of
RAM counters are written to job database 25, together with
the changes in the BDU objects. This operation guarantees
that each job affects the BDU exactly once. That is, if J
increments a counter in an object, the counter will only be
incremented once because of J.

After certain transactions, JEP#2’s RAM counter repre-
senting the current completed job number from JCP#1
reaches 1005, which is greater than the required value of 1000
to send a deletion message. The new counter value will then
be transmitted back to JCP#1 in a job deletion message.

When JCP#1 receives a deletion message with ID=1005, it
deletes all jobs in its database with an ID less than or equal to
1005 (using wrapping arithmetic, described above). Since J’s
1D is 123, which is less than or equal to 1005, it will be
deleted. Since there are about a thousand or more jobs being
deleted at this time, and since many of them were written out
in a single transaction originally, the deletion typically
requires very few pages of job database 26 to be written back
to disk. Once this transaction commits, there will be no more
trace of J in any database or in any processor’s memory.

The only network communication that occurred between
JCP#1 and JEP #2 was: transmission of jobs from JCP#1 to
JEP#2, and transmission of a deletion message from JEP#2 to
JCP#1. Transmission of job J occurred twice in the example
only because JEP#2 crashed after the initial transmission. The
deletion message cleaned up about 1000 jobs with one packet.

Network traffic can be reduced by compressing informa-
tion transmitted on the network. A simple compression
scheme, for example, may be one that reduces the size of a
job. Because a job is an object, and each object is an instance
of some class that defines the structure and behavior of that
object, we may define jobs as instances of different subclasses
of'a class “Job”. Jobs may be created to update instances of a
class “Address” or a class “Person”. Hence, a class of jobs
includes jobs whose tasks are directed toward a class of
objects. When the JCP encodes an instance of a class of jobs
into bytes for the first time, the name of that class is transmit-
ted along with an encoding of the job object. The class is then
added to the list of encountered classes and given a unique
number. The next time an instance of this class is transmitted,
the class’s unique number is transmitted instead. The com-
pression scheme thus effectively reduces the overhead of
transmitting a job.

US 9,189,536 B2

17

To improve the efficiency of each JEP, a technique which
we call OID-sorting can be used. In this technique, at the start
of'a transaction in which jobs are to be executed, all available
jobs are first sorted by the unique object identifier of the
object, if any, that will be modified by the job. If multiple
objects may be modified by running a job, one can be chosen
arbitrarily. If a job creates an object, the identifier of the
container which will contain the new object is used for sort-
ing. Execution of the jobs then proceeds through this list in
order.

Because the sorted list of jobs might not be completely
executed in a single transaction, we must record enough infor-
mation in the database to reconstruct the remaining jobs dur-
ing recovery, should a failure occur. This information
includes the first and last job id numbers of jobs in the list, for
each source of jobs (jobs are assigned unique id numbers only
relative to the JCP/JEP pair that the job is transmitted from/
to). This lets us reconstruct the exact same list of jobs at
recovery time, but we must also record how many of these
jobs have actually been executed whenever we commit a
transaction. That information allows perfect recovery from a
failure. During recovery of a failed JEP we must wait for each
JCP to retransmit at least those jobs that participated in the
sorted list of jobs that was being executed at failure time.

When the entire sorted list of jobs has completed, job
deletion messages can then be sent to each JCP that provided
the jobs that were executed. Sending deletion messages
before this point is still reasonable, as long as the persistent
counter that says where we are in the list is relative to the end
of the list, rather than the start. Otherwise, when some of the
early jobs in the list have been deleted, they will not be resent
to the JEP at recovery time.

There are several reasons for sorting jobs by the unique
object identifiers of the object affected by the job: Since
object identifiers encode the physical location of an object so
that object identifiers that are close together numerically rep-
resent objects that are closer together physically therefore
fewer pages from the database may need to be examined/
written per transaction. Multiple writes to the same page will
be aggregated together into a single physical write. Fewer
containers may need to be locked per transaction—the high
bits of the object identifier specify the container, and the low
bits specify the object within that container. The pages that are
written at commit time have strong physical proximity on the
disk, so seek times will be reduced.

To ensure that at recovery time the exact same list of jobs is
produced, the sorting criterion must break ties consistently.
Thus, after considering the object identifier of the object
being updated, ties must be broken by further sorting based on
the originating JCP# and the job’s id number. This pair of
values is guaranteed unique, and is sufficient to unambigu-
ously break ties (arbitrarily).

Because each change to an object can potentially cause
much work to be done (e.g. re-indexing the object as
described below), we may wish to avoid this situation when
possible. Thus, when a job is asked to execute, it may examine
the list of jobs that affect the same object (these jobs come
after the current job in the sorted list). The changes repre-
sented by these jobs can then be collapsed together into a
single update operation, which in our example would allow
re-indexing to occur only once for this set of changes. Jobs
can carry timestamps if appropriate, to identify the order in
which to perform conflicting changes.

Besides ordering jobs based on the location of the data
being modified by them, one may wish to prioritize jobs based
on how urgently they must be completed. There might not be
any urgency to complete a batch job, but an object-updating

10

15

20

25

30

35

40

45

50

55

60

65

18

job triggered directly by a user should probably run as soon as
possible. Several basic mechanisms exist to support this need.

Ina deadline-based soft real-time priority scheme, each job
has associated with it a time. It is strongly desirable that the
job complete by this time. Unfortunately, this interferes with
OID-sorting. To resolve this conflict, the following algorithm
is used. At any point in time a JEP has a heap of jobs, sorted
by expiration time. The job execution process looks at the top
element of the heap. This is the job with the earliest deadline,
possibly in the past if we’re temporarily overloaded. Jobs are
popped from the heap until we’ve popped either a job more
than 5 seconds in the future, or all the jobs, whichever comes
first. We then sort these jobs in OID order and attempt to run
as many of them as possible in a transaction. If we don’t finish
running them all in a single transaction (because for example
more than 10 seconds have elapsed in that transaction and 10
seconds is the maximum configured transaction time), we
commit the transaction and continue executing these jobs in
the next transaction.

To deal with deletion of completed jobs in this scheme, we
look to the solution that was already described for synchro-
nized jobs. A synchronized job is considered “dealt with”
when a copy has been committed to the database ofits JEP. At
this time (or some time thereafter), a message is sent back to
the JCP indicating that the JCP may delete its copy of that job.
To support OID-sorted execution (i.e., execution not in job id
order), we must commit copies of all jobs, not just synchro-
nized ones, to the JEP’s database.

Referring again to FIG. 1. BDU 22 in data processing
center 191 may contain millions of objects. To locate an
object in the BDU, information about the object, including its
location or other attributes, is stored and arranged for efficient
access in a parallel (concurrent) processing environment.

For a data processing center 191 of an insurance company,
for example, each of the BDU objects may represent a record
for aperson insured under a certain type of policy. When there
is a change in the features of that type of policy, an insurance
agent may wish to locate all the people insured under that type
of policy and notify them of the change. To efficiently locate
the people, a file that includes pre-sorted entries may be used.
Each of the pre-sorted entries contains a pointer to one per-
son’s object and other information that is essential in identi-
fying the person. For example, the insurance agent may use a
file that has entries for all the people insured under a given
type of policy, pre-sorted by last name.

When objects are created, deleted, or updated, the corre-
sponding entries in the file must be updated. To assure that all
jobs that create, delete, or update objects will consistently
modify the corresponding pre-sorted entries, the jobs must
agree upon a common mechanism and a common format to
make necessary changes on the file, the pre-sorted entries, and
the objects. The format of the file and the pre-sorted entries
are designed to facilitate searching and locating a desired
object, and therefore, the format or layout of information in a
pre-sorted entry is typically the same as other entries in the
file.

The common mechanism pre-defines what attributes of an
object are used for pre-sorting the corresponding entry, what
information is displayed in the entry, and how changes in an
object should propagate to the entry. We call the common
mechanism an Asynchronous Index Manager (AIM), the file
an index, and the pre-sorted entry an index entry.

In a database system that allows tens of thousands (or
more) of simultaneous data accesses, it is crucial to maintain
the integrity of the index while avoiding access conflicts. The
AIM defines how indices should be structured and main-
tained. The task of executing the changes in the index is

US 9,189,536 B2

19

carried out by jobs scheduled by the USP. For example, when
an object is added or deleted, new jobs are spawned to add or
delete the corresponding index entries in the appropriate indi-
ces. Similarly, when updating an object would have an effect
on the accuracy of index entries, jobs are spawned to update
the appropriate indices that contain the affected index entries.

The index is similar in concept to a card catalog used in a
library for locating specific books. The card catalog holds
index cards, each of which contains information about a book.
The information may include a brief summary ofthe book, as
well as other necessary information for a user of the card
catalog to locate the book in the library.

Books may be looked up by any one of multiple criteria,
such as by author, title, or subject, and the index cards repre-
senting the books are sorted by a search criterion for effi-
ciency. A given catalog typically holds information for a
collection of things of the same type. For example, there may
be separate catalogs of books, catalogs of periodicals, or
catalogs of audio media (e.g., tapes or CDs). All the index
cards in a catalog have the same layout in terms of how the
information is organized; for example, the title of a book is at
the top of every index card and the author’s name is below the
title.

The index used for locating objects in the BDU is concep-
tually similar to a card catalog. An index contains a collection
of'index entries (index cards), each of which contains a small
summary of an object (book). Objects identified within an
index are of the same type, i.e., the same class in an object-
oriented terminology. Index entries within an index have the
same data structure. Index entries may be sorted or hashed by
a pre-defined key, depending on the intended access pattern
and the size of the index.

Each index has key and non-key attributes that can be
defined by a system administrator. The key attributes are used
for sorting or hashing an index entry, and the non-key
attributes are displayed in the index entry together with the
key attribute. The display of the non-key attributes allows
certain pre-defined information about the object to be viewed
by a user of the index without having to retrieve the object
from the BDU. In the library example, an index card sorted by
the ISBN may contain information including the book title
and the author.

FIG. 5 is a diagram of an index entry. Every person in the
database has a corresponding index entry 40 in an index
called Person-SSN, which means the index contains a class of
person objects, represented by respective index entries sorted
by the key attribute SSN. Each index entry of the index
contains the SSN; a person’s first name and last name, and a
pointer to a person object 41, which in turn points to a name
object 42 containing more information about the name of the
person.

Indices and index entries may be stored on disks and in
memory. Storing a copy of the index in memory can reduce
index access time and therefore increase the processing speed
of locating an object. The copy of the index in memory is
implemented as a memory-resident (i.e., RAM-resident)
search structure (e.g., a binary search tree or hash table).
When a user submits a request for updating a BDU object, the
resulting update job not only updates the BDU object, butalso
updates the associated indices. The search structure must be
updated in lockstep with the changes in the BDU and indices
on disk. Because each index update is a consequence of
executing a job that updates a BDU object, the job is given an
additional responsibility of maintaining the consistency of
search structures with BDU objects and the indices on disk. In
case of a JEP failure, at recovery time the JEP rebuilds the
search structure in memory by scanning the BDU.

10

15

20

25

30

35

40

45

50

55

60

65

20

Modifications to a BDU object may not take place imme-
diately after amodification request is sent, because changes in
the BDU are not reflected until a transaction is committed.
Modification to the memory search structure, however, could
happen immediately. If a user submits a query for information
about an object that has not been committed to the BDU, the
object cannot be located. An object identifier (OID) may not
have been assigned for such an uncommitted object. In this
case, the user may simply discard the result from the query.
The situations that updates in database may lag behind
updates in search structure may sometimes arise in a standard
database system. If an object has not yet been written to a
standard database system, we will not be able to find the
object. An alternative scheme to handle this situation is not to
change the search structure immediately when executing a
job, but rather to accumulate the changes and apply them
immediately after a transaction is committed.

FIG. 6 is a user interface called a class editor 50 with which
a system administrator may define an index for a class of
objects. Generally, an object can be categorized by an object
type, such as person type or product type. An object type may
include multiple classes; for example, a car insurance com-
pany may classify its policyholders as people with compre-
hensive coverage and people with liability coverage. Each of
the classes has at least one corresponding index. Each index
has a key attribute and non-key attributes, which can be edited
from the class editor.

Class editor 50 allows a system administrator to choose a
key 51 for an index he creates or edits and to select the
non-key attributes 52 he wishes to store in the index entry. In
FIG. 7, the index being edited contains a class of Test::Person
53. The key of the index is SSN, and each index entry of the
index contains information about the SSN, the address of the
person, and the postal code for the person’s address (not
shown).

Since a person may have more than one address, more than
one postal code may be associated with that person. For
efficiency in locating all persons having the same postal code,
where the postal code is a key in an index, multiple index
entries are created for a person who has multiple addresses,
one index entry per address.

To find out what indices are defined, a system administrator
can open an object schema window to edit and display a
schema that contains the definitions of the indices. FIG. 7
shows an object schema window 60 that displays the defini-
tions of object classes (61, 62, and 63) and their associated
indices and attributes. The schema contains layouts of classes
for the objects in the database. Each class layout describes the
physical structure of instances of that class in terms of
attributes and relationships. Additionally, the schema
describes how to distribute objects among databases and pro-
cessors without contention, how to parse input files that are to
be loaded into the database, and how to consolidate data from
multiple sources.

Every time a request for a task that involves adding, delet-
ing, or updating an object arrives at the USP, the request is
sent to a JCP 350 to create one or more jobs that act on the
request. The JCP uses the information in the schema to find
out which indices are defined for that object class, and what
the keys are for the indices. JCP 350 then determines neces-
sary changes to the indices, such as adding, deleting and
updating index entries, and decides the sequence of jobs that
need to be created in order to update the indices and to
complete the task. Each requested action has a different
requirement on the order in which objects and their respective
index entries are modified. The requirement must be strictly
enforced to maintain the integrity of the indices.

US 9,189,536 B2

21

FIG. 8 illustrates an example of an index modification
process for loading a file 70. File 70 may require adding 610,
deleting 630 and updating 650 objects in BDU 22. For
example, file 70 may contain customer records of a new
division that was just acquired by an insurance company. The
acquired customer records may contain duplicated informa-
tion or more up-to-date information about existing customers,
or contain information about new customers. To consolidate
the acquired customer records with the existing customer
records, jobs are created to add, delete, and update the BDU
objects representing the customer records. As an example of
the jobs that are created and the order in which they must be
done, when deleting an object (630), links between the object
and its index entries must be deleted first (631). Then jobs are
produced to delete all the index entries referring to the object
(632, 633). After the index entries are deleted, another job is
spawned to delete the object (634, 635). The index entries
must be deleted before the object is deleted; otherwise,
another process may use one of the index entries to access the
object while the object has been deleted.

In some implementations such as Objectivity/DB®, the
pointer to an object is reused. The pointer to an object is called
an object identifier (OID) and includes four 16-bit unsigned
integers that specify the object’s database, container, page
number, and page slot in the storage. The index entry of the
deleted object contains the OID of the deleted object, but the
OID may have been reassigned to another object that is added
to the same database, container, and storage location as the
deleted object. Therefore, if an object is deleted before its
index entries, one of two error conditions may happen: either
a process may try to access a non-existent object, or the
process may refer to the wrong object.

To avoid contention in deleting an object and its index
entries, jobs that carry out the deletions of an object are
scheduled by the USP. The jobs may be scattered over several
contention spaces. Each of'the jobs causes another “response”
job to be spawned to indicate its completion. The response
jobs are synchronized and loaded into the contention space
where the object resides. When all the response jobs arrive in
the execution cell (as determined by the completion of a
quorum), all the response jobs are collapsed into a single job
that deletes the object.

The ordering of steps for adding an object is the reverse of
deletion. When adding (610) an object, the object must be
created before any index entries can refer to it. When an object
is created (611, 612) and stored in a persistent memory,
“insert” jobs are spawned (613), each creating an index entry
(614, 615) and each executed in an appropriate contention
space. Note that these jobs are created in the same transaction
as the object creation; otherwise the object might end up
stored without the corresponding jobs, if a failure occurs.
Then jobs are created to establish links between the object and
its index entries (617).

When updating an object, the update may have no effect on
any of the object’s index entries. For example, a person’s
color preference may be stored in the person’s object, but not
in any of the index entries. In this situation, no update is
needed for the index entries. In other examples, the update
may require the index entries to be updated or deleted, or
require new index entries to be created. For example, if a
person’s address is changed and address is part of the infor-
mation stored in the person’s index entry, the index entry must
be updated. If the person bought another house in another
postal area, and the index is keyed (i.e. sorted) by postal code,
a new index entry containing the address of the person’s new
house needs to be inserted.

10

15

20

25

30

35

40

45

50

55

60

65

22

In the process of updating an object, JCP 350 creates a job
to update the object (650, 651) before updating any of its
index entries. In the example of updating a person’s address,
although the index entry contains the old address before the
index entry is updated, the OID contained in the index entry
that points to the person’s object is still current. Therefore, an
updated object can still be located by using the old index
entry. When updating an object, JCP 350 figures out and
produces a list of index entries that should exist after the
update. This list is then compared with the current list of index
entries attached to the object to determine which re-indexing
jobs need to be performed, that is, which index entries should
be updated (652), created (654), deleted (653), or remain
unchanged.

If an index entry should be deleted (653), it is first discon-
nected from the object, then JCP 350 creates ajob to delete the
index entry. This job sends back a reply job to the object
indicating completion. This reply job is necessary for a wait-
free algorithm described below. If an index entry should be
added, JCP 350 creates a job that contains enough informa-
tion to create the index entry in the appropriate contention
space, and then sends back a response job to the object indi-
cating the index entry that was created. If an index entry
should be updated, JCP 350 creates ajob that contains enough
information to update the existing index entry, and then sends
back a response job to the object indicating completion. If an
index entry should remain unchanged, there is nothing to be
done.

To assure that re-indexing jobs work correctly when mul-
tiple overlapping changes occur to an object (i.e., changes
that happen before the index entries have all been brought into
agreement with the object), a wait-free algorithm is used. As
will be described below, the wait-free algorithm allows
changes in an object while the object has outstanding jobs,
and further avoids contention between all the re-indexing
jobs. The object reserves a two-bit field for an index entry
update operation: a re-indexing indicator and a pleaseRein-
dex indicator. The re-indexing indicator indicates that there
are outstanding re-indexing jobs that have not yet sent back
the response jobs. The pleaseReindex indicator indicates that
the object was changed before its re-indexing jobs were com-
pleted. Responses from the individual re-indexing jobs are
synchronized. The synchronization allows all the re-indexing
responses to collapse into a single job when all the responses
are present in the object’s corresponding execution cell. The
single job updates a list of index entries attached to the object.
Immediately after the update, the object’s pleaseReindex
indicator is examined. If the indicator is set, it indicates that
the object has changed during the re-indexing that was just
finished. Another re-indexing operation according to the new
change will start right away.

A request for deleting an object may arrive during a re-
indexing operation. Deletion requests have priority over
update requests, because any updates on the object and its
index entries vanish after the object is deleted. An additional
reserved two-bit field is used in the object: one is deleting, and
the other one is pleaseDelete. Deleting bit indicates if the
object is in the process of being deleted, and pleaseDelete
indicates if there is a request for deleting the object. When
either bit is set, the pleaseReindex indicator is ignored, and
subsequent requests to update the object are also ignored.

If a user only wishes to read certain information about a
BDU object, the user may send a query. Queries, unlike most
other jobs, do not create changes in objects, index entries, or
indices. In the embodiments of the USP using TCP/IP sock-
ets, queries may be handled as query jobs to reduce the
amount of data transmitted via a network. When a requestor

US 9,189,536 B2

23

submits a query for locating a BDU object, a JCP converts the
query into a query job, which is then sent to the JEP of the
contention space in which the requested object resides. Each
query job has an ID, which is used for the originating JCP to
match a result with the corresponding query. The query job is
not given a sequencing number as other jobs that are sent over
the network. If the query job is lost in network transmission
on the way to a JEP, it is up to the requestor to re-submit the
query (possibly after a time-out). The handling of lost queries
is reasonable for customers accessing a company’s databases
from the World Wide Web using Web browsers (such as
Microsoft’s Internet Explorer).

When a query job is received by the JEP, instead of adding
it to the queue of ready jobs, the query job may be addedto a
different queue, the queue of query jobs. Between ordinary
jobs, and even between the steps of an ordinary job, this queue
of'query jobs may be examined. If there is a query job waiting,
the query is executed immediately, and the result is sent back
to the originating JCP, with the job’s ID attached. Because
query jobs only read data in the BDU, allowing the query to
precede other jobs does not introduce any ordering problems.

An object in the BDU may be located not only with an
index, but also with links connecting the object to other
related objects. Many BDU objects are related to each other.
For example, referring again to FIG. 1, data processing center
191 of an insurance company may store its policyholders’
objects and product objects in BDU 22. Suppose a policy-
holder Bill has earthquake insurance, which means that an
“ownership” relationship exists between an object represent-
ing Bill and a product object representing earthquake insur-
ance. If a user of the system wishes to locate the product
object owned by Bill, one way is to retrieve Bill’s object, look
for which insurance policy Bill has, and locate an index entry
of earthquake insurance in an index of insurance product
objects. Alternatively, information about the earthquake
insurance may be retrieved by establishing a direct link
between the object of Bill and the product object of earth-
quake insurance. Using the direct link, information related to
anobject of interest (e.g., an insurance product object) may be
retrieved directly without going through an index.

The direct link between objects is called a relationship. A
relationship may be, for example, an ownership or a parent-
age. Relationships between objects can be built by a mecha-
nism called an Asynchronous Relationship Manager (ARM).
A system administrator only needs to define a relationship
between specific classes of objects, and jobs will be automati-
cally created to build the relationship between the corre-
sponding instances of the classes (i.e., objects) according to
the ARM mechanism.

The ARM defines how relationships should be structured
and maintained for a system that allows millions of simulta-
neous accesses, such as in a large-scale distributed database
system. The ARM provides an environment and a set of
common rules to guarantee the integrity of the relationships
as objects are added, modified, or deleted across the distrib-
uted databases.

For example, if the insurance company decides to stop
carrying the earthquake insurance that Bill has, the ARM
guarantees that the relationship between Bill and the earth-
quake insurance will be automatically deleted before the
product object of earthquake insurance is removed from data-
base. The task of executing the changes in the relationships is
carried out by jobs scheduled by the USP to allow high
throughput and efficiency. For example, when an object is
added or deleted, new jobs are spawned to add or delete the
associated relationships. Similarly, if updating an object

10

15

20

25

30

35

40

45

50

55

60

65

24

requires its relationships to be updated, jobs are spawned to
update the appropriate relationships.

Jobs executed by JEP 300 may be jobs that add, delete, or
update a BDU object. Changes in the object may require
related objects in the BDU to be added, deleted, or updated.
The related objects that need to be added, deleted, or updated
can be identified and located by following the relationships
between objects. Once the related objects are found, JEP 300
spawns new jobs to update the related objects.

New relationships between classes can be defined in a user
interface as shown in FIG. 7. The user interface displays a
schema window 60, which allows the system administrator to
add and delete relationships between classes of objects, for
example, an organization class 61, a person class 62, and a
product class 63.

When a new relationship is defined, each object in one class
must be linked to a corresponding object in another class.
Similarly, when a new object is created by a JCP 350, new
relationships between the new object and other existing
objects must be established. To locate the existing objects in
a relationship, JCP 350 uses an index for all the objects in
BDU 22. From the information stored in the schema, JCP 350
knows which index to select and how the information is sorted
within the index. The JCP creates another job for establishing
a relationship between each existing object and the new
object.

To establish a relationship between objects that may be
distributed across multiple processors and databases, addi-
tional jobs and objects have to be created to manage the
message-passing between objects and synchronous opera-
tions. More specifically, a relationship may be implemented
as a set of interconnected role objects, one role object for each
class. FIG. 10(1)-(4) and FIG. 6 illustrate the process for
establishing relationships for a newly created object 1 with
existing object 2 and object 3. Object 1, object 2 and object 3
are instances of class 1, class 2 and class 3, respectively, and
the objects are shown in FIG. 9 as C1, C2 and C3, respec-
tively.

First, a role object R1 is created by a job J1 for object C1
(510 and 620). Then jobs J1a® and J1b* are created and sent to
C2 and C3 (622), each with a pointer pointing to R1 (520).
The superscript ‘t” indicates that J1a’ and J1b carry a tag and
a quorum fraction for spawning synchronous jobs. J1a’ and
J1b’ create roles R2 and R3 (640 and 660), and send pointers
(531, 532) connecting R2 and R3 back to R1, respectively.

J1a* and J1b’ further spawn synchronous jobs J1al® and
J1b1° (530, 642 and 662), and send them back to R1 (643 and
663). The superscript ‘s’ indicates that J1al® and J1b1* are
synchronous jobs, such that neither J1al® nor J1b1° may
execute until both are ready to run. Before running, J1al® and
J1b1” are collapsed into a single job, which contains informa-
tion about R2 and R3 carried by J1al® and J1b1°, respectively.
The information includes the pointers that point to R2 and R3
(531 and 532), and pre-determined cache information of C2
and C3, which will be described later. The single job records
the pointers and caches the pre-determined cache information
inR1 (624).

After the single job completes, it spawns final creation jobs
J2a and J2b and sends them to R2 and R3 (626), respectively,
with the information of R1, R2 and R3 (540). R2 and R3 use
the information to record the pointers of the other two (541,
542, 543 and 544) and cache the information about the other
two, respectively (644 and 664). The relationship is not avail-
able to an object until its role has the information of all of the
other roles (680).

After a relationship is established, a user ofthe system may
wish to see all the relationships of an object to be displayed,

US 9,189,536 B2

25

together with certain information about the other objects par-
ticipating in the relationships. To increase the performance of
displaying the information, the role of the object caches infor-
mation about other objects with which its object has relation-
ships. For example, a person may have many relationships to
other people, products and organizations, which are usually
scattered across multiple databases. It is inefficient to retrieve
information about the scattered objects across multiple data-
bases. Therefore, role objects cache information from the
other objects in the relationship.

FIG. 11 illustrates a user interface 80 that allows a user to
select cache variables to be cached in a role object participat-
ing in an ownership relationship. The user may indicate the
cache variables by marking the attributes in a column 81
labeled as “Data” on the top. A summary of all relationships
of an object, including the cached information about other
objects in the relationships, can be quickly displayed in a list.

Every role has a version number that increases when its
associated object is modified. When the version number of the
object is changed, a message is sent to the other roles of the
object’s relationships so that the values of the object cached in
the other roles can be updated accordingly. The version num-
ber cycles back to 0 every 65536 versions.

Every role also tracks the version of all other roles that it
currently has cached, and the number of versions missing for
each other role. A version may be missing because messages
containing version numbers may be delayed for variable
lengths of time during transmission over a network, thus
causing out-of-order reception. The number of missing ver-
sion numbers for each other role indicates how many out-
standing messages from thatrole are yet to be received. A role
may not want to delete itself if outstanding messages are
about to arrive.

To compute the number of missing versions, the role takes
the received new version number and subtracts the current
version number. The difference minus one is added to a run-
ning total that indicates the number of missing versions.
When a version less then the current version is received, the
difference between the current version and the received ver-
sion is computed, and the running total of missing versions is
decremented by one. For example, if the current version is 6
and a version 10 arrives, we record the fact that 10-6-1=3
versions are still expected (7, 8, 9). After version 10 has
arrived, receiving old version 8 means there are still 2 old
versions in transit (7 and 9).

A relationship may be deleted as a result of an associated
object being deleted or updated. It is also possible to delete a
relationship because it is no longer necessary. When a rela-
tionship is deleted between objects, an algorithm for the
relationship deletion guarantees the correctness of the dele-
tion even in the presence of simultaneous delete requests from
different objects in the relationship. The algorithm guarantees
that there will never be a message arriving for a role that has
been physically deleted even though the USP does not guar-
antee the order in which the messages arrive.

The deletion process begins when an object tells one of its
roles to delete that role’s relationship. This role is called the
initiator. At schema definition time, one of the role classes of
the relationship is arbitrarily selected as the coordinator role.
The coordinator is allowed to be the initiator.

If the initiator is already marked for deletion, it indicates
that deletion is already in progress and the relationship will
eventually be deleted. Thus, the initiator does nothing. Alter-
natively, if the initiator has not been marked for deletion, it
marks itself for deletion and sends a message 1 to the coor-
dinator role. The final version number of the initiator is passed
along in the message 1. The version number is used to order

10

25

30

40

45

55

60

26

role cache update requests (i.e., when an object changes, all
roles that participate in relationships with the object’s role are
asked to update their caches with the new information).
Because it is marked for deletion, the initiator role ignores
subsequent changes to the initiator role’s object, and does not
send change messages to the other roles.

When the coordinator receives a message 1, it increments a
counter indicating how many neighboring roles have been
marked as deleted. If this was the first such message, a mes-
sage 2 is sent to each role.

When message 2 is received by a role, the deletion flag is
examined. If the role is already marked for deletion then it
means that a message 1 was already sent to the coordinator
from this role. So the role simply records that the message 2
has arrived and sends no reply. Otherwise the role marks itself
as deleted and sends a message 1 to the coordinator to indicate
this.

These rules for messages 1 and 2 guarantee that the coor-
dinator will receive exactly one message 1 from each role, and
will receive that message only after that role has been marked
deleted. This is true even if there are multiple initiators, each
attempting to trigger deletion of the relationship.

When the counter in the coordinator indicates that all roles
have been marked as deleted (because the coordinator has
received a message 1 from each role), the coordinator sends a
message 3 to each role to indicate it is safe to physically delete
it.

These message 3’s are the last messages sent to the roles
from the coordinator. Since each role was already marked as
deleted prior to this, they have also stopped sending cache-
updating messages to each other. However, there may be
messages that were sent long ago that still have not arrived
(because the USP does not guarantee ordering of messages).
To avoid physically deleting a role before all messages have
arrived at it, each role has an array of version numbers, one for
each other role. The version number records the latest version
number among the received messages for the corresponding
role. Another array maintains an outstanding message count
for each other role, the count indicating that how many mes-
sages have not yet arrived from each other role. The outstand-
ing messages are typically cache-updating messages.

The algorithm guarantees only one message 3 will ever
arrive at arole, and it carries an array of final version numbers
for all the roles. When this message arrives, a ready-to-physi-
cally-delete flag is set. If the counters inside the role indicate
that there are no outstanding incoming messages, the role is
immediately deleted. Otherwise, whenever an old cache-up-
date message finally arrives at the role, the counters are
updated and, if they indicate all messages have arrived and the
roleis marked as ready-to-physically-delete, the role is physi-
cally deleted from the database.

Message 2 can arrive at a role after message 1, if the role is
an initiator. A flag in each role indicates whether the message
2 has arrived yet, and physical deletion is postponed until the
message 2 has arrived (as well as any outstanding cache-
updating messages, as described above).

The following is a brief summary of the information con-
tained in the three types of messages:

Message 1 (“A role has been marked for deletion.””) con-

tains:
The role that was marked for deletion.
The final version number of that role.
Message 2 (“Please mark for deletion on behalf of coordi-
nator.”) contains:
The coordinator role’s final version number.

Message 3 (“Physically delete role when old messages are

all accounted for.”) contains:

US 9,189,536 B2

27

The final version number of each role.

At the moment a role is marked as deleted, that role should
be disconnected from its object. Thus, from the viewpoint of
the object, it appears that the deletion has already happened.

As an example, consider three connected roles, R1,R2,and
R3, where R2 is the coordinator. Referring to FIG. 12 and
FIG. 13(a)-(f), suppose that the deletion is initiated at R1
(810, 820). Also assume that there is an outstanding cache-
updating message from R1 to R3 that is in transit for the entire
example. The example reflects the steps taken by each of the
roles.

R1: I’'m not yet marked (811), so I’ll mark myself deleted
(813) and send a message 1 to R2 (814), the coordinator. It
will contain my final version number, FV1.

(Suppose that there are no cache-updating messages in transit

from R1 to R2.)

R2: Receiving message 1 from R1 (830), I record in my table
of role version numbers that FV1 is the current version for
R1 (835). I see that there are no cache-updating messages
in transit from R1to R2. I now send out a message 2 to each
role (R1, R2, and R3) (837). This message contains my
final version number FV2.

R1: Ireceive the message 2 (831), but since I already marked
myself as deleted, I simply record the coordinator’s (R2’s)
final version number.

R2:Ireceive the message 2 (831). Since [have not yet marked
myself deleted (832), | mark myselfdeleted (833) and send
amessage 1 to the coordinator (i.e., myself) (834), includ-
ing my final version number FV2.

R3:Ireceive the message 2 (831). Since [have not yet marked
myself deleted (832), | mark myselfdeleted (833) and send
a message 1 to the coordinator (R2) (834), including my
final version number FV3.

(Suppose that R2 receives message 1 from R3 before it

receives message 2 from R2.)

R2: T receive message 1 from R3 first. I record R3’s final
version number in my array of current versions (835).
Since I have only received two message 1°s (from R1 and
R3), I do nothing else.

R2: I receive message 1 from R2 next (831). Since this was
my 3rd message 1, [now know all final version numbers of
all roles, as well as the fact that they’re all marked for
deletion. Therefore I send a message 3 to each role (838),
passing the final version numbers FV1, FV2 and FV3 in
each message.

(Supposethat after R1, R2 and R3 receive message 3 from R2,

there is no outstanding message for R1 and R2, but one

outstanding message for R3.)

R1: I receive message 3 from R2, indicating I can physically
delete myself. I reconcile the final version numbers against
my current versions (839). That is, I check for outstanding
messages in my array of outstanding message counts, [see
that there are none. Therefore I delete myself (840).

R2: I receive message 3 from R2, indicating I can physically
delete myself. I reconcile the final version numbers against
my current versions (839). That is, I check for outstanding
messages in my array of outstanding message counts, [see
that there are none. Therefore I delete myself (840).

R3: I receive message 3 from R2, indicating I can physically
delete myself. I reconcile the final version numbers against
my current versions (839). That is, I check for outstanding
messages in my array of outstanding message counts, [see
that there is one outstanding cache-updating message from
R1. I mark myself as ready-to-physically-delete and wait
for the next message (841).

R3: I receive the final outstanding cache-updating message
from R1 (842), note that it arrived, and notice that it was the

10

15

20

25

30

35

40

45

50

55

60

65

28

last message [was waiting for and that my ready-to-physi-

cally-delete flag is set (839). I then physically delete myself

from the database (840).

Referring again to FIG. 9, messages for deleting a relation-
ship may sometimes arrive when a role is in the process of
creating the relationship. To prevent a message from being
sent to a non-existent role, the role will complete the creation
job before it deletes itself. If a role receives a deleted message
before it has received the final creation job (J2a or J2b), it will
mark itself as deleted and wait until the final creation job is
received. As soon as the final creation job is received, the role
will proceed with processing the delete message.

Appendix A contains source code of an implementation of
the invention for use on a system in which VisualWorks
SmallTalk 5i.1 is installed with an Objectivity/DB 5.2.2 data-
base system.

Other embodiments are within the scope of the following
claims. For example, the invention could be implemented on
a database that is not an object database, such as a relational
database. In an object database, the data objects can be
referred to as data items, and the data object attributes can be
referred to as data elements. In a relational database the data
records could be considered the data items and the data fields
could be considered the data elements.

What is claimed is:

1. A method comprising

maintaining a database that stores data persistently, at least

two different items of the data in the database being
stored in two different non-conflicting regions or two
different physical clusters having characteristics such
that conflicting accesses to data can be prevented within
one of the regions or clusters without preventing simul-
taneous accesses to data in the other of the two regions or
clusters,

accepting jobs for concurrent execution by processors,

some of the jobs requiring execution as a group and
requiring access by one of the processors to data that is
stored persistently in a non-conflicting region or a physi-
cal cluster in the database, others of the jobs requiring
access by processors to other non-conflicting regions or
other physical clusters, each of the jobs in the group
including associated information that defines participa-
tion of the job in the group, and

each ofthe processors refraining from executing any of the

jobs in the group until it determines from the associated
information that all of the jobs in the group have been
accepted and execution can proceed for all of the jobs in
the group.

2. The method of claim 1, in which the jobs that are
accepted for execution as a group are created by branching of
other jobs.

3. The method of claim 1 in which the information associ-
ated with the jobs of a group is generated at the time of
creation of the jobs.

4. The method of claim 1 in which the data carried by each
job in the group comprises a tag that identifies the job as
participating in the group.

5. The method of claim 1 in which the data carried by each
job in the group comprises a quorum fraction that represents
the job’s proportion of participation in the group.

6. The method of claim 1 in which

the jobs are received for execution in an order, and further

comprising

causing each of the processors to execute at least some of

the jobs other than in the order in which the jobs are
received for execution.

US 9,189,536 B2

29

7. The method of claim 6 in which the at least some of the
jobs to be executed by one of the processors are replaced by a
single aggregated job.

8. The method of claim 6 in which each of the processors
determines an order in which to process the at least some of
the jobs based on physical locations of the persistently stored
data on disk that must be accessed by the jobs.

9. The method of claim 1 in which at least some of the jobs
to be executed by a processor are redundant, and the processor
does not execute the redundant jobs.

10. The method of claim 1 comprising the processors
executing the accepted jobs in parallel and independently of
each other.

10

30

